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Abstract

This thesis explores using busses in communication architectures and control structures. First,
we investigate the organization of permutation architectures with bussed interconnections. We
explore how to efficiently permute data among VLSI chips in accordance wih a predetermined set
of permutations. By connecting chips with shared bus interconnections, as opposed to point-to-
point interconnections, we show that the number of pins per chip can often be reduced. The results
are derived from a mathematical characterization of uniform permutation architectures based on
the combinatorial notion of a difference cover. Second, we explore priority arbitration schemes that
use busses to arbitrate among n modules. We investigate schemes that use lg n < m < n busses
and asynchronous combinational arbitration logic. The standard binary arbitration scheme uses
m = Ig n busses and arbitrates in t = lg n time. We present the binomial arbitration scheme that
uses m = Ig n + 1 busses and arbitrates in t = 4 lg n time. We generalize binomial arbitration to
achieve a bus-time tradeoff m = O(tnl/'). The new schemes are based on data-dependent analysis
and can be adopted with no changes to existing protocols. Third, we examine the performance of
binary arbitration in a digital transmission line bus riodel. We show that arbitration time depends
on the arrangement of modules. For general arrangements, arbitration time grows linearly with
number of busses, while for linear arrangements, arbitration time is constant.
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Abstract

This thesis investigates several aspects of the organization of digital systems that employ bussed
interconnections. The thesis focuses on two application domains for busses: communication
architectures and control mechanisms, and explores the capabilities of busses as interconnection
media, computation devices, and transmission channels.

Chapter 1 discusses the significance of bussed interconnect in digital systems, provides some
background on busses, and describes the problems addressed in this thesis.

In Chapter 2 we investigate the organization of permutation architectures that employ
bussed interconnections. We explore the problem of efficiently permuting data stored in VLSI
chips in accordance with a predetermined set of permutations. By connecting chips with shared
bus interconnections, as opposed to point-to-point interconnections, we show that the number
of pins per chip can often be reduced. For example, we exhibit permutation architectures with
Fv'n1 pins per chip that can realize any of the n cyclic shifts on n chips in one clock tick.
When the set of permutations forms a group with p elements, any permutation in the group
can be realized in one clock tick by an architecture with O(V/g"p) pins per chip. When
the permutation group is abelian, we show that O(,/p) pins suffice. These results are all
derived from a mathematical characterization of uniform permutation architectures based on the
combinatorial notion of a difference cover. We also consider uniform permutation architectures
that realize permutations in several clock ticks, instead of one, and show that further savings
in the number of pins per chip can be obtained.

Chapter 3 explores efficient utilization of busses for implementing arbitration mechanisms.
We investigate priority arbitration schemes that use busses to arbitrate among n modules in a
digital system. We focus on distributed mechanisms that employ m busses, for lg n < m < n,
and use asynchronous combinational arbitration logic. A widely used distributed asynchronous
mechanism is the binary arbitration scheme, which with m = lg n busses arbitrates in t = lg n
units of bus-settling time. We present a new asynchronous scheme - binomial arbitration -

that by tusing m = lg n + 1 busses reduces the arbitration time to t = ½ Ig n. Extending this
result, we present the generalized binomial arbitration scheme that achieves a bus-time tradeoff
of the form m = O(tnl/t) between the number of arbitration busses m, and the arbitration
time t (in units of bus-settling time), for values of 1 < t < Ig n and lg n < m < n. Our schemes
are based on a novel analysis of data-dependent delays. Most importantly, our schemes can be
adopted with no changes to existing hardware and protocols; they merely involve selecting a
good set of priority arbitration codewords.
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In Chapter 4, we examine the performance of priority arbitration schemes presented in
Chapter 3 under the digital transmission line bus model. This bus model accounts for the
propagation time of signals along bus lines and assumes that the propagating signals are always
valid digital signals. A widely held misconception is that in the digital transmission line model
the arbitration time of the binary arbitration scheme is at most 4 units of bus-propagation delay.
We formally disprove this conjecture by demonstrating that the arbitration time of the binary
arbitration scheme is heavily dependent on the arrangement of the arbitrating modules in the
system. We provide a general scenario of module arrangement on m busses, for which binary
arbitration takes at least m/2 units of bus-propagation delay to stabilize. We also prove that
for general arrangements of modules on m busses, binary arbitration settles in at most m/2 + 2
units of bus-propagation delay, while binomial arbitration settles in at most m/4 + 2 units of
bus-propagation delay, thereby demonstrating the superiority of binomial arbitration for general
arrangements of modules under the digital transmission line model. For linear arrangements of
modules in increasing order of priorities and equal spacings between modules, we show that 3
units of bus-propagation delay are necessary for binary arbitration to settle, and we sketch an
argument that 3 units of bus-propagation delay are also asymptotically sufficient.

Finally, Chapter 5 provides some concluding remarks and identifies directions for further
research on systems with bussed interconnections.

Keywords: arbitration, arbitration protocol, asynchronous arbitration, binary arbitration.
binomial arbitration, bus-propagation time, bus-settling time, bus-time tradeoff, bussed inter-
connections, busses, cyclic shifter, data-dependent delays, difference cover, digital transmission
line, generalized binomial arbitration, linear arbitration, permutation architecture, permutation
set, priority arbitration, signal propagation, uniform architecture, VLSI.

Thesis Supervisor: Charles E. Leiserson
Title: Associate Professo:- of Computer Science and Engineering
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Chapter 1

Introduction

This thesis investigates several aspects of the organization of systems with bussed interconnec-

tions. Busses are used in many electronic and computer systems for a variety of applications.

including broadcasting information, realizing communication patterns, implementing system

primitives, and performing computations. Busses come in all shapes and sizes and connect

modules at various system levels. Busses are the backbone of many digital systems and play a

vital role in numerous architectures.

Busses are desirable in many systems due to their simplicity, modularity, reliability. and

monitoring capabilities. Busses constitute shared media to which connected modules can listen

and onto which they can broadcast. Busses offer scalable-cost interconnect, standard module

interface, and configuration flexibility. Bussed organizations are easy to control and monitor.

and provide a high level of reliability at moderate cost.

Busses have been extensively researched in the electrical engineering and computer science

literature (see references). Various aspects of busses have been investigated, including the

physical and electrical characteristics of the media, interconnection topologies, communication

protocols, and algorithmic techniques, among others. Bussed interconnections are still not fully

understood, however, and their capabilities are not fully exploited. Due to the widespread use

of busses for applications in electronic and computer systems, it is important to develop a better

understanding of the organization and capabilities of systems with bussed interconnections. In

this thesis, we investigate several organizational aspects of digital systems that employ bussed

interconnections and demonstrate how to use busses more efficiently for implementing several

11



12 CHAPTER 1. INTRODUCTION

system functions. Although the results of this thesis are presented with computer systems and

computer busses in mind, they are not limited to these settings and are applicable to general

systems that employ communication over shared media.

This thesis is organized as follows. In this chapter, we discuss several issues of bussed

interconnections that are relevant to our work and describe the problems addressed in this

thesis. The body of the thesis focuses on two application domains for shared interconnect:

communication architectures and control mechanisms, and examines the capabilities of busses

as interconnection media, computation devices, and transmission channels. In Chapter 2. we

investigate the organization of permutation architectures that employ bussed interconnections.

Chapter 3 explores how to implement priority arbitration mechanisms efficiently on busses

that exhibit fixed settling delay. In Chapter 4, we examine the performance of some )riority

arbitration schemes under the digital transmission line model. Finally, Chapter 5 presents

some concluding remarks and directions for further research concerning systems with bussed

interconnections.

1.1 Bussed interconnections

Busses are shared communication media. Many digital systems employ one or more busses

to communicate among system modules. Busses enable several devices sharing the same in-

terconnection medium to communicate, in contrast with point-to-point wires that establish

communication only between pairs of devices.

Several technologies of shared interconnect can be classified as busses, including broadcast

radio channels, electrical wires, and optical fibers. The focus of this thesis is on electrical

busses, which are used by most computer systems. Extensive surveys and tutorials on the

characteristics of electrical busses appear in [16, 22, 40, 57, 82, 88]. Discussion of other shared

communication media can be found, for example, in [12, 61, 78]. In this section, we briefly

introduce and discuss several issues of electrical busses that are important for the development

of this thesis and we comment on their relevance. We present these issues in a somewhat

bottom-up manner.

Bus driving technologies. There are several standard technologies for driving digital

signals onto an electrical bus. One common bus-driving technology is the tri-state driver, where
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a device driver applies either a logic level of 0, a logic level of 1, or disables its output terminal

and leaves it floating (see [22, 62, 88]). Tri-state drivers consume little power, but can only

be used when it is guaranteed that at all times no more than one device drives the bus, while

all other devices disable their drivers. This requirement must be met, since otherwise devices

may fight each other, resulting in high-current spikes, intermediate voltage levels on the bus.

and possible component failure. Another common bus-driving technology is the open-collector

driver, where an external pullup drives the bus to a default logic level and device drivers can

pull the bus down to express the nondefault logic value (see [22, 40, 88]). The open-collector

technology allows the bus to implement a wired-OR logic function, since several devices can

pull the bus down simultaneov-:y, resulting in the OR of the logic values applied. (Another

technology for implen-.eating wired-OR is to charge and discharge a VLSI bus line that is treated

as a large capacitor (see L62, S3I).) In this thesis, we explore both tri-state and open-collector

drivers. The results of Chapter 2 can use either tri-state or open-collector busses, while Chapters

3 and 4 make use of open-collector busses.

Bus signal propagation. A bus, being a physical element, has several physical and

electrical characteristics. The propagation of a signal on a bus takes time, which depends

on the length, material, shape, temperature, and other physical properties of the bus and its

environment. A high-speed bus is modeled as an analog transmission line with associated

impedance that depends on the inductance, the capacity, and the length of the bus (see [5. 40]).

Most computer systems, however, use the digital abstraction, which specifies certain discrete

voltage levels for representing logic values. Digital signals driven onto a bus require time to

propagate and to resolve various transient effects before the bus reaches a valid logic level.

In designing digital bus primitives and protocols, careful attention must be given to modeling

the bus appropriately and to allowing enough time for the bus to settle before the logic value

that it carries can be reliably used. In this thesis we use the digital abstraction of busses.

In Chapter 2, busses are used as interconnection media and we assume that sufficient time is

allocated for signal propagation along a bus. In Chapters 3 and 4, busses may be driven by

multiple modules and may carry transient signals. Chapter 3 assumes that the bus-settling time.

denoted by Tbu.. is accounted for, while Chapter 4 analyzes the effects of signal propagation

along idealized digital transmission lines with bus-propagation time of Tp.
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Number and functionality of bus lines. Bussed systems vary considerably in the

number of bus lines they use and in their functionality. A single bus line can only implement

one communication transaction at any given time and its performance, therefore, degrades

when the number of modules connected to it increases; the latency of a bus with n modules

is 0(n) and its throughput is 0(1/n). However, many bussed systems use a single bus line

for serial communication when the cost associated with multiple lines is too high or when the

functionality of the bus does not justify multiple lines (see 116, 22, 61, 881). Most backplane bus

systems, on the other hand, use a collection of bus lines to provide high bandwidth connections

between system modules (see (16, 22, 40]). Such systems use parallel communication to transfer

several bits concurrently, thereby reducing the time that the bus system is occupied by any

given transaction. In addition, several multiplexing techniques enable multiple transactions

over the same collection of bus lines by using time sharing or frequency sharing of the busses.

Another common method for enhancing system connectivity and performance is the use of

multiple busses to establish concurrent and independent communication channels among system

modules or subsets of them (see [10, 13, 30, 54, 64, 69, 70, 73, 77]). In this thesis, we focus

on multiple and parallel bus lines. Chapter 2 uses multiple busses to establish concurrent and

independent communication channels among subsets of modules and Chapters 3 and 4 explore

how to efficiently employ parallel bus lines that are shared among all system modules.

Bus timing disciplines. To control the behavior of a complex digital system, one of

several timing disciplines is used (see [22, 62, 88]). There are two orthogonal dimensions to

distinguish between timing disciplines: synchronous vs. asynchronous and global vs. local. In

a synchronous system, there is a systemwide notion of time, generally established by using sys-

temwide clock signals, that is used for timing and coordinating transactions. Bus transactions,

in a synchronous system, start at some clock edge and finish at a subsequent clock edge, taking

an integral multiple of clock cycles to complete. An asynchronous system, in contrast, does not

time operations but rather coordinates them through the use of hand-shaking protocols. Bus

transactions, in an asynchronous system, can start and finish at any time and their duration

is self determined. In globally timed systems each operation takes a fixed and predetermined

amount of time, while in locally timed systems modules can control the duration of different

operations by using several control signals. These two orthogonal dimensions of classifying
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timing disciplines give rise to four general classes of timing disciplines: Synchronous Globally

Timed (SGT), Asynchronous Globally Timed (AGT), Synchronous Locally Timed (SLT), and

Asynchronous Locally Timed (ALT). The choice between these timing disciplines depends on

the purpose, performance, and cost of the designed system. In this thesis, we focus on the SGT,

AGT, and ALT timing disciplines. The architectures of Chapter 2 use the synchronous globally

timed discipline, while Chapters 3 and 4 explore asynchronous globally timed and asynchronous

locally timed mechanisms.

Bus arbitration and mastership. Since a bus is shared among several system mod-

ules, situations may arise where the bus is simultaneously requested by more than one module.

To allocate the bus to one module at a time, an arbitration/access mechanism is required

that determines the mastership of the bus. Numerous arbitration/access mechanisms have

been developed, including daisy chains, priority circuits, polling, token passing, and carrier

sense multiple access protocols (see [12, 16, 22, 40, 57, 61, 78, 82, 88]). A distinction is of-

ten made between centralized arbitration/access mechanisms, where bus arbitration and access

are determined by a central controller, and distributed arbitration/access mechanisms, where

arbitration and access processes are carried out simultaneously by all system modules. Cen-

tralized controllers are generally simpler, operate fast, and are more flexible in their assignment

procedures. Distributed controllers, on the other hand, are usually more reliable, require less

dedicated wiring and communication, and are easier to monitor and expand. Many tightly

coupled systems, such as SIMD parallel machines and high-performance architectures, use cen-

tral control mechanisms, while more loosely coupled systems, such as multiprocessor systems

and data communication networks, employ distributed arbitration/access mechanisms. In this

thesis, boih centralized and distributed control mechanisms are explored. The permutation ar-

chitectures described in Chapter 2 use a centralized bus mastership procedure, while Chapters

3 and 4 investigate distributed arbitration mechanisms with busses.

Bus transactions. Busses can be used to implement several types of communication

transactions that can be characterized by the sets of modules involved. The most common

types of bus transactions are one-to-one, where a single module transmits data intended for

a single receiver, and one-to-many (broadcast), where a single module sends information to

multiple receivers. The receiver (receivers) of bus transactions are typically identified by their
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address or through external control. Two other types of transactions, which are less frequently

implemented on busses, are the many-to-one (converge) and many-to-many (multicast) commu-

nication patterns. In these transactions, several modules may try to transmit information con-

currently over the same media, which requires some means of combining or selecting among the

different requests. This thesis investigates some of these bus transactions. Chapter 2 deals with

realizing permutations (one-to-one transactions) over bussed interconnections, while Chapters

3 and 4 use broadcast (one-to-many transactions) and multicast (many-to-many transactions)

over wired-OR busses.

1.2 Focus and contribution of this thesis

Bussed interconnections are used for many applications in electronic and computer systems.

This thesis focuses on two application domains for busses: communication architectures and

control mechanisms, and examines the capabilities of busses as interconnection media. compu-

tation devices, and transmission channels. The following subsections describe the contribution

of the thesis chapters and put the results of this thesis in perspective.

1.2.1 Communication architectures

The interconnection network of a digital system, which connects the system modules to each

other, has a profound impact on the system's capabilities, performance, size, and cost. Several

interconnection schemes have been heavily studied and are used in many systems, including

point-to-point wires, multistage interconnection networks, and shared busses. Because of the

costs associated with wiring and packaging, it is generally desirable to minimize the number of

wires in a system and the number of connections per module.

Chapter 2 of this thesis investigates how busses (multiple-pin wires) can be employed to

efficiently realize certain communication patterns among modules in a digital system. We

concentrate on the problem of efficiently permuting data stored in VLSI chips (modules) in

accordance with a predetermined set of permutations. We show that by connecting modules

with shared bus interconnections, as opposed to point-to-point interconnections, the number of

pins per module can often be significantly reduced.



1.2. FOCUS AND CONTRIBUTION OF THIS THESIS 17

Much research has focused on implementing permutations and various other communication

patterns on different interconnection networks. By using point-to-point wires, for example, any

communication pattern can be realized in one communication cycle. For rich and diverse

communication patterns, however, full point-to-point interconnections tend to use many wires

and many connections per module, since any two modules that need to communicate must

share a wire. (See [60, 83] for VLSI costs of point-to-point interconnection schemes.) Multistage

interconnection networks have also been heavily investigated for the purpose of realizing general

communication patterns and more specifically for routing permutations (see [6, 7. 27, 32, 37,

52, 53, 55, 74, 75, 86]). Many multistage interconnection networks exhibit logarithmic number

of stages and constant number of connections per module. However, the savings in the number

of pins per module come at the expense of realizing permutations in logarithmic number of

communication cycles and the use of a considerable amount of switching hardware. The use of

busses as the interconnection infrastructure for realizing communication patterns has also been

examined by several researchers (see [10, 13, 30, 64, 73, 77]). In this thesis we demonstrate that

bussed interconnections can be employed for realizing general classes of permutations in one

communication cycle, with considerably small number of pins per module, and with virtually

no switching and controlling hardware.

In Chapter 2, we exhibit bussed permutation architectures for many classes of permutation

sets. For example, we present permutation architectures that with O(Vi) pins per module can

realize any of the n cyclic shifts on n modules in one communication cycle. Our results are

derived from a mathematical characterization of uniform permutation architectures based on the

combinatorial notion of a difference cover. We extend our discussion to permutation groups and

show that when the set of permutations forms a group with p elements, any permutation in the

group can be realized in one communication cycle by a uniform architecture with O(v/`p-p ) pins

per module. Furthermore, when the permutation group is abelian, we show that O(',p) pins per

module suffice. We also consider uniform permutation architectures that realize permutations

in several communication cycles, instead of one, and show that further savings in the number

of pins per module can be obtained. Finally, we identify many permutation networks that can

benefit from our methodology of using difference covers for designing uniform architectures,

including hypercubes, multidimensional meshes, and shuffle-exchange networks.
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1.2.2 Control mechanisms

Large digital systems use control mechanisms for several functions, including establishing timing

disciplines, triggering events, and sequencing transactions. The complexity of a large digital

system generally calls for the separation of the control mechanisms from the communication

and computation structures. Description of control mechanisms for digital systems appear in

[20, 88], for bus systems in 116, 22, 40, 57, 82], and for communication networks in [12, 61, 78].

Chapter 3 of this thesis explores the problem of arbitrating among modules in a digital

system. Many arbitration mechanisms have been developed that use daisy chains. central-

ized priority circuits, polling mechanisms, token passing schemes, and carrier sense multiple

access protocols, among others (see [12, 16, 22, 40, 45, 46, 57, 61, 78, 82, 881). We focus on

distributed priority arbitration mechanisms, where contention is resolved using predetermined

module priorities and arbitration processes are carried out in a distributed manner by sys-

tem modules. Distributed priority arbitration mechanisms are used in many modern systems,

including numerous multiprocessors and data communication networks. Specifically, we inves-

tigate arbitration mechanisms that employ dedicated arbitration busses and use asynchronous

globally or locally timed combinational logic. Several other studies of bus-based arbitration

mechanisms appear in [3, 22, 23, 24, 47, 71, 79, 80, 81].

In Chapter 3, we examine distributed asynchronous priority arbitration mechanisms that

arbitrate among n modules using m arbitration busses, for Ig n < m < n. A widely used

distributed asynchronous mechanism is the binary arbitration scheme [79], which with m = Ig n

busses arbitrates in t = Ig n units of time. We present a new asynchronous scheme - binomial

arbitration - that by using m = Ig n + 1 busses reduces the arbitration time to t = I lg n.

Extending this result, we present the generalized binomial arbitration scheme that achieves

a bus-time tradeoff of the form m = e(tnl/t), between the number of arbitration busses m

and the arbitration time t (in units of bus-settling delay), for values of lg n < m < n and

1 < t < lg n. Our schemes are based on a novel analysis of data-dependent delays. Most

importantly, our schemes can be adopted with no changes to existing hardware and protocols;

they merely involve selecting a good set of priority arbitration codewords. We also investigate

the capabilities of general asynchronous priority arbitration schemes that employ busses and

present some lower bound arguments that demonstrate the efficiency of our schemes.
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1.2.3 Transmission lines

The speed of information transfer through a communication medium is bounded by several

physical properties of the medium. Different media such as radio broadcast channels, electrical

wires, and optical fibers have different propagation speeds, but they can all be modeled essen-

tially in the same manner. In any communication system, the information sent by a module

requires time to propagate and reach other modules. Communication protocols must, therefore,

account for signal propagation by incorporating appropriate time intervals.

In Chapters 3 and 4, we investigate how propagation delays of digital signals on electrical

busses can influence the design of communication protocols. The propagation of a signal on

an electrical bus depends on the length, shape, and other properties of the bus. A high-speed

bus is modeled as an analog transmission line with associated impedance that determines the

propagation speed of signals along it (see [5, 40]). Most computer systems, however, use the

digital abstraction, which specifies certain discrete voltage levels for representing logic valhies.

When designing communication protocols for electrical busses, signal propagation delays must

be accounted for, as done, for example, in Ethernet [63]. A common method of dealing with

different and unpredictable propagation delays on a shared medium is to allow sufficient time

for the propagation of signals from the furthest module in the system and for the settlement of

the communication medium. This approach is explored in Chapter 3, where the time required

by bus-based arbitration mechanisms to stabilize is measured in units of bus-settling delay.

The unit of a bus-settling delay is an upper bound on the time that an electrical bus resolves

various transient effects and reaches a valid logic value. In Chapter 4, on the other hand, we

investigate a more elaborate model of a bus as a digital transmission line, which takes into

account propagation of signals along a bus line but ignores the analog nature of the signals.

In Chapter 4, we examine the performance of priority arbitration schemes presented in

Chapter 3 under the digital transmisuion line bus model. This bus model accounts for the

propagation time of signals along bus lines and assumes that the propagating signals are always

valid digital signals. A widely held misconception is that in the digital transmission line model

the arbitration time of the binary arbitration scheme is at most 4 units of bus-propagation delay.

We formally disprove this conjecture by demonstrating that the arbitration time of the binary

arbitration scheme is heavily dependent on the arrangement of the arbitrating modules in the
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system. We provide a general scenario of module arrangement on m busses, for which binary

arbitration takes at least m/2 units of bus-propagation delay to stabilize. We also prove that

for general arrangements of modules on m busses, binary arbitration settles in at most m/2 + 2

units of bus-propagation delay, while binomial arbitration settles in at most m/4 + 2 units of

bus-propagation delay, thereby demonstrating the superiority of binomial arbitration for general

arrangements of modules under the digital transmission line model. For linear arrangements of

modules in increasing order of priorities and equal spacings between modules, we show that 3

units of bus-propagation delay are necessary for binary arbitration to settle, and we sketch an

argument that 3 units of bus-propagation delay are also asymptotically sufficient.



Chapter 2

Bussed Permutation Architectures

This chapter explores the problem of efficiently permuting data stored in VLSI chips in accor-

dance with a predetermined set of permutations. By connecting chips with bussed interconnec-

tions, as opposed to point-to-point interconnections, we show that the number of pins per chip

can often be reduced. For example, for infinitely many n, we exhibit permutation architectures

with rv'n-i pins per chip that can realize any of the n cyclic shifts on n chips in one clock

tick. When the set of permutations forms a group with p elements, any permutation in the

group can be realized in one clock tick by an architecture with o(vrp-nTp) pins per chip. When

the permutation group is abelian, we show that O(/p-) pins suffice. These results are all de-

rived from a mathematical characterization of uniform permutation architectures based on the

combinatorial notion of a difference cover. We investigate properties of difference covers and

describe procedures for designing efficient difference covers for many classes of permutation sets.

We also consider uniform permutation architectures that realize permutations in several clock

ticks, instead of one, and show that further savings in the number of pins per chip can be ob-

tained. Our methodology of using difference covers for designing efficient uniform architectures

is applicable to a wide range of permutation networks, including hypercubes, multidimensional

meshes, and shuffle-exchange networks.

This chapter describes joint research with Joe Kilian and Charles Leiserson [481 and [49].
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2.1 Introduction

The organization of communication among chips is a major concern in the design of an electronic

system. Because of the costs associated with wiring and packaging, it is generally desirable

to minimize the number of wires and the number of pins per chip in an architecture. Much

research has focused on point-to-point and multistage interconnections (see [6, 7, 27, 37, 75, 86]).

In this chapter, we investigate how busses can be employed to efficiently implement various

communication patterns among a set of chips. Other studies of bussed interconnection schemes

for realizing communication patterns can be found in [10, 11, 13, 30, 54, 64, 77].

Perhaps the simplest example of the advantage of bussed interconnections is the use of

a single shared bus to communicate between any pair of chips connected to the bus in one

clock tick. Communicating between any pair of chips in one clock tick can be implemented

with two-pin wires, but any such scheme requires () wires and n - 1 pins per chip, where n

is the number of chips in the system.1 Of course, a two-pin (point-to-point) interconnection

scheme may be able to implement more communication patterns, but if we are only interested

in communication between individual pairs, the additional power, which comes at a high cost,

is wasted.

An example that better illustrates the ideas in this chapter comes from the problem of

building a fast cyclic shifter (sometimes called a barrel shifter) on n chips. Initially, each chip c

contains a one-bit value cc. The function of the shifter is to move each bit cc to chip c+s (mod n)

in one clock tick, where s can be any value between 0 and n - 1.

Any cyclic shifter that uses only two-pin wires requires at least (n) wires and n - 1 pins per

chip in order to shift in one clock tick because each chip must be able to communicate directly

with each of &he other n - 1 chips. Using busses, however, we can do much better. Figure 2-1

gives an architecture for a cyclic shifter on 13 chips which uses 13 busses and only 4 pins per

chip. To realize a shift by 8, for example, each chip writes its bit to pin 3 and reads from pin 1.

The reader may verify that all other cyclic shifts among the chips are possible in one clock tick.

(In Section 2.4, we give a general method for constructing such cyclic shifters based on finite

projective planes.)

'Unless otherwise specified, we count only data pins in our analysis and omit consideration of the pins for
control, clock, power, and ground since they are needed by all implementations.
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Figure 2-1: A cyclic shifter on 13 chips that uses 13 busses. Each chip has 4 pins, and each bus has 4
chips connected to it. This cyclic shifter is based on the difference cover {O, 1,3,9} for Z1 3.

The cyclic shifter of Figure 2-1 has the advantage of uniformity. All chips have exactly the

same number of pins, and to accomplish each of the 13 permutations specified by the problem,

all chips write to (and read from) pins with identical labels. For all busses, the number of pins

per bus is 4, which is the same as the number of pins per chip. Moreover, the connections

between chips and busses follow a periodic pattern. The uniformity of the architecture leads to

simplicity in the control of the system. Four control wires from a central controller are sufficient

to determine each of the 13 shifts-two wires for specifying the number of the pin on which to

write, and two for the pin to read-which is the minimum possible. Thus, our control scheme

uses the minimum number of control pins, and the on-chip decoding logic is straightforward

and identical for all the chips.

Cyclic shifters for general n can be constructed using an idea from combinatorial mathe-

matics related to difference sets [43, p. 121]. (See also [14, 34, 38, 56, 66].)

Definition 1 A subset D C Z, of the integers modulo n is a difference cover for Z, if for all

s E Zn, there exist d,, d, E D such that s = d, - dj (mod n).

That is, every integer in Z, can be represented as the difference modulo n of two integers in

D. For example, the set D 0 {O, 1, 3, 9} is a difference cover for Z1 3, since
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0 = 0-0

1 = 1-0

2 = 3-1

3 = 3-0

4 = 0-9

5 = 1-9

6 = 9-3

7 = 3-9

8 = 9-1

9 = 9-0

10 = 3-3

11 = 1-3

12 - 0-1,

where all subtractions are perfrrmed modulo 13

Given a difference cu ,•i Lur Z,, with k elements, a cyclic shifter on n chips with n busses and

k pins per clip can b .-or cted. Suppose D = {do, dl,..., dk-,.I is a difference cover for Zn.

In the cyclic shifter, chip c Lonnects via its pin i to bus c + di (mod n), for all c = 0, 1 .. , n - 1

and i = 0, 1, .. ., k - 1. To see that any cyclic shift on the n chips can be uniformly realized,

.onsider a cyclic sE - by s. Since D is a difference cover for Zn, there exist di,dj E D such that

s = di - dj (mod n). To realize the shift by a, each chip writes to pin i and reads from pin j..

Chip ; therefore writes onto bus c + di, and bus c + di is read by chip (c + di) - dj = c + s. No

collisions occur because each bus has exactly one pin labeled i and one pin labeled j connected

to it, as can be verified.

The remainder of this chapter explores permutation architectures, the properties of multiple-

pin interconnections, and related combinatorial mathematics. In Section 2.2, we define a per-

mutation architecture, introduce the notion of uniformity, and prove some basic properties of

architectures that employ busses to realize arbitrary sets of permutations. Section 2.3 defines
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the notion of a difference cover for a set of permutations, relates it to the notion of a uniform

permutation architecture, and proves some properties of difference covers. In Section 2.4, we

show how to build cyclic shifters that are provably efficient. Section 2.5 investigates how to

design small difference covers for any set of permutations that forms a finite group. In Sec-

tion 2.6, we extend the discussion to uniform architectures that realize permutations in more

than one clock tick. Several applications and extensions of bussed permutation architectures

are discussed in Section 2.7, as well as further research and some questions left open by our

research.

2.2 Permutation architectures

In this section we formally define the notion of a permutation architecture, and we make precise

the notion of uniformity. We also prove some basic properties of permutation architectures that

realize arbitrary sets of permutations. The definitions in this section are somewhat intricate

and tedious, and are indicative of the difficulties faced in the design of efficient permutation

architectures. In the next section, however, we use these definitions to show that reasoning

about uniform permutation architectures is essentially equivalent to reasoning about difference

covers, a simpler and more elegant mathematical notion. The remainder of this chapter then

uses the simpler notion.

For convenience, we adopt a few notational conventions. We use multiplicative notation

to denote composition of permutations. The inverse of a permutation ir is denoted by 7r-1.

Composition of functions is performed in right-to-left order, so that irlir2 is defined by Tr1 r2z =

7r1(7 2(z)). The identity permutation on n elements is denoted by In, or by I if the number

of elements is unimportant. For a permutation set 0, we denote by -- 1 the set of all the

inverses of the permutations of 4, i.e., 0-1 = ({-0- : 0 E 4). For two permutation sets -6 and

* , the notation VF is used to denote the permutation set {4n* :, E 4 and 0 E 9]. We use the

notation [n] to denote the set of n integers {0, 1,...,n - 1).

2.2.1 What is a permutation architecture?

We begin by formally defining the notion of a permutation architecture.
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Definition 2 A permutation architecture is a 6-tuple A = (C,B,P, CHIP, BUS, LABEL) as

follows.

1. C is a set of chips;

2. B is a set of busses;

3. P is a set of pins;

4. CHIP is a function CHIP : P - C;

5. BUS is a function BUS : P - B;

6. LABEL is a function LABEL : P -- N, where if z,y E P, x y y, and cHIP(r) = CBIP(y),

then LABEL(X) 6 LABEL(y).

The set C contains all the chips in the architecture, and the set B contains all the busses.

Which chips are connected to which busses is determined by the pins they have in common;

the set P contains all the pins. The function CHIP determines which pins belong to which

chips. Similarly, the function BUS determines which pins are interconnected by which bus. The

function LABEL names the pins on the chips by natural numbers such that all pins on a given

chip have distinct labels, which we shall sometimes call pin numbers.

Our formal definition of a permutation architecture omits several subsystems that techni-

cally should be included, but whose inclusion is not germane to our study. These subsystems

include a control network that specifies what permutation is to be performed and clocking

circuitry for synchronization. Our focus is on the structure of the bussed interconnections for

permuting the data, and thus our definition encompasses only this aspect of the architecture.

We now define what it means for a permutation architecture to realize a permutation.

Definition 3 A permutation architecture A = (C, B, P, CHIP, BUS, LABEL) realizes a permuta-

tion ir : C -- C if there exist two functions WRITE, : C -- P and READ, : C -- P, such that

for any chips c, cI,c 2 E C, we have:

1. CHIP(READ,(C)) = CHIP(WRITE,(C)) = C;

2. BUS(WR.ITE,(c)) = BUS(READ,(2r(C)));
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3. cl 0 c2 implies BUS(WRITE 1(Cl)) 0 BUS(WRITE.(C2 )).

The architecture uniformly realizes w if, in addition:

4. LABEL(WRITE,(Cl)) = LABEL(WRITE,(C 2 ));

5. LABEL(READ,(Cl)) = LABEL(READ,(C2 )).

We say that a permutation architecture realizes a set II of permutations if it realizes every

permutation in II. We say that it uniformly realizes II if it uniformly realizes every permutation

in IH.

Intuitively, for a permutation r, the functions WRITE, and READ, identify the write pin

and the read pin for each chip. Condition 1 makes sure that each chip writes and reads pins

that are connected to it. Condition 2 ensures that the bus to which chip c writes is read by

chip r(c). Condition 3 guarantees that no collisions occur, that is, no two data transfers use

the same bus. The architecture uniformly realizes a permutation (Conditions 4 and 5) if all

chips write to pins with the same pin number and read from pins with the same pin number.

as in the cyclic shifter from Figure 2-1.

Our definition of a permutation architecture implies that "complete" permutations are to be

realized, that is, every chip sends exactly one datum and receives exactly one datum. Moreover,

an interconnection is required even when a chip sends a datum to itself. Since no collisions occur,

the number of busses in the architecture must be at least the number of chips. This observation

leads directly to the following theorem.

Theorem 1 In any permutation architecture that realizes some nonempty permutation set II.

the average number of pins per bus is at most the average number of pins per chip.

Proof. Let A = (C, B, P, cHIr', BUS, LABEL) be a permutation architecture for II. The average

number of pins per chip is IPI / I¢C, and the average number of pins per bus is JPJ / IBI. Condi-

tion 3 of Definition 3 says that for any permutation v E fl, any two distinct chips are mapped

to distinct busses. Consequently, we get that IBI Ž_ ICI, which proves the theorem. U

Under the assumption that no interconnection is needed for a chip to send data to itself.

Theorem 1 is no longer applicable. A similar theorem can be proved for this model, however,
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which involves the number of fixed points in the permutations realized by the architecture.

Specifically, suppose the architecture realizes a set R of permutations. Define the rank of a

permutation r E I1 as RANK(Ir) = 1{c E C : ir(c) # c}j, and define the rank of the permutation

set H as RANK(H) = max,,fn RAN K(•r). The analogue to Theorem 1 states that the ratio

between the average number of pins per bus and the average number of pins per chip is at most

JCII/RAN K(II).

2.2.2 Uniform permutation architectures

In any architecture A that uniformly realizes a permutation set II, the number of pins that are

actually used to uniformly realize 11 is the same for all chips, and additional pins on a chip

are unused. Furthermore, the number of busses used in realizing any permutation 7r E I is

equal to the number of chips. These observations lead to the following definition of a uniform

architecture.

Definition 4 A uniform permutation architecture for a permutation set II is a permutation

architecture A = (C, B, P, CHIP, BUS, LABEL) such that:

1. A uniformly realizes H1;

2. 1{z E P : CHIP(x) = cl}I = x{z E P : CH IP(z) = c2}I for any two chips c1,c 2 E C;

3. IBI = ICI;

4. if z 5 y and LABEL(Z) = LABEL(y), then BUS(z) # BUS(Y).

Thus, all the chips in a uniform permutation architecture have the same number of pins (Con-

dition 2), the number of busses is equal to the number of chips (Condition 3), and the labels of

the pins on any bus are distinct (Condition 4).

The following theorem demonstrates that any permutation architecture that uniformly re-

alizes some permutation set H1 can be made into a uniform architecture for H1.

Theorem 2 Let A = (C, B, P, CHIP, BUS, LABEL) be a permutation architecture that uniformly

realizes the permutation set H1, and let k be the smallest number of pins on any chip in C. Then

there is a uniform architecture A' = (C', B', PF, CHIP', BUS', LABEL') for H1 with at most k pins

per chip.
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Proof. We construct the uniform architecture A' from the permutation architecture

A in two steps. First, we construct an intermediate permutation architecture

A" = (C", B", P", CHIP", BUS", LABEL") by removing extraneous pins from chips in A such

that all chips end up with the same number of pins per chip and such that each pin plays a role

in uniformly realizing II. Then, the busses of A" are reorganized to produce the architecture

A' in such a way that the number of busses in A' is equal to the number of chips. We assume

that the permutation set 1I is nonempty, since otherwise the theorem is trivial.

In the first step, we remove pins that are unused in uniformly realizing II. Since A uniformly

realizes r1, each permutation 7r E 11 can be associated with a distinct pair (i,j) of pin labels

corresponding to the labels that all chips write to and read from in order to realize 7r. A pin is

unused if its label does not appear in any of these 1111 pairs. Removing the unused pins results

in the architecture A" in which all chips have the same number of pins, since each chip has

exactly one pin for each label used in uniformly realizing TI. The permutation architecture A"

uniformly realizes II, and furthermore, each pin is used in uniformly realizing some ?r E If. If

we let s denote the number of pins per chip in A", then we have s < k, since originally at least

one chip had k pins and no pins were added.

In the second step, we reorganize the busses of A" to produce the uniform architecture A' in

which the number of busses is equal to the number of chips. For any permutation architecture

that realizes a nonempty permutation set, the number of busses is never smaller that the number

of chips. Assume without loss of generality that C" = [n], B" = [m], and range(LABEL") = [s].

The theorem is proved if the architecture A" uses only n = IC"I busses, but in general, the

architecture might use m > n busses.

We define a collection of mappings = {'0o,ik,...,tPo-i}, where for each 0 < i < s - 1,

the mapping O, : (n] - (m] is defined to be tb,(c) = b if and only if chip c E C" is connected

via its pin number i to bus b E B". The elements of * are indeed mappings since each chip

has a pin numbered i for each 0 < i < s - 1. The mappings are injective (one-to-one), since

otherwise two pins with the same pin number would be connected to the same bus, and both

pins could not be used to uniformly realize permutations, thereby violating the construction

of A" in the first step. The collection I is a multiset, since it may be that two different pin

numbers i i j define the same mapping (i.e., vi - i~). The key idea is that any permutation
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is implemented by each chip writing to pin i and reading from pin j, thereby employing the

mapping tki to write data from the n chips to n distinct busses, and the inverse of the mapping

0 to read data from the same n busses back to the n chips.

We now show how to reorganize the busses of A" in order to construct a uniform architecture

A'. We partition * into I equivalence classes Qo U I@, U ... U *I-, such that 1A and 10j are

in the same equivalence class *,, if and only if range(wP,) = range(Oj). This partitioning has

the property that if r E II, then there exists an r such that 7r = 0-10 where O,,jt, E 'l,.

(Recall that the inverse of an injective mapping xt, : [n] - [m] is defined as the mapping

i,-` : range(o) - [n) such that if 10(c) = b, then -L1(b) = c.) For each 0 < r < I - 1, pick a

bijection (one-to-one, onto) f, : range(O) - [n], where 0 is any mapping in *I,. (We can pick

a bijection, since 0 is injective, which implies Irange(O)l = n.) We define the architecture A'

by C' = C", B' = [Ni, P' = P", CHIP' = CHIP", LABEL' = LABEL", and for any pin z E P' such

that 'hLABEL'(Z) E *,, we define BUS'(z) = f,(BUS"(z)).

The architecture A' has exactly s pins per chip and satisfies IB'I = IC'I = n, thereby

satisfying Conditions 2 and 3 of Definition 4. We show Condition 4 holds by considering any

two pins z and y with LABEL'(Z) = LABEL'(y) = i. We have BUS'(z) = f,(Bus"(z)) and

BUs'(y) = f,(BUS"(y)) for some f as defined in the previous paragraph. Since f, is an injective

mapping and because Condition 4 of Definition 4 holds for A", we then have z $ y implies

BUS'(z) $ BUS'(y).

It remains to show that Condition 1 of Definition 4 holds, that is, that A' uniformly realizes

II. Consider any permutation r E 11. Since A4" uniformly realizes H1, there exists a pair of pin

labels (i,j) such that ;r is realized in A" by each chip writing to its pin numbered i and reading

from its pin numbered j. We use the same pin labels (ij) to realize the permutation 7r in A'.

Conditions 1, 4, and 5 of Definition 3 are immediately satisfied. To verify Conditions 2 and 3

we use the following observation. In architecture A" chip c is connected via its pin labeled h to

bus 10h(c), while in architecture A' it is connected to bus f,(Oh(c)), where 'Ph E 9,. Condition

2 now holds since 7r = 0-10, = (frtj)-'(frj). Condition 3 holds since f0 is a permutation

on [n). We therefore conclude that A" is a uniform architecture for II with at most k pins per

chip. U



2.2. PERMUTATION ARCHITECTURES 31

2.2.3 Some properties of uniform architectures

From the definition of uniform permutation architectures one can derive several structural

properties of these architectures. The next theorem provides a lower bound on the number of

pins per chip in any uniform architecture for a permutation set II.

Theorem 3 Let A = (C, B, P, CHIP, BUS, LABEL) be a uniform permutation architecture for a

permutation set II. Then the number of pins per chip in A is at least N/17T1.

Proof. Because architecture A realizes fl uniformly, we can associate each ?r E 11 with a pair

(ij) of pin numbers such that 7r is realized by each chip writing to its pin labeled i and reading

from its pin labeled j. Since A is uniform, each chip has exactly JPJ / ICI pins, and the number

of such pairs is ()Pj / IC)) 2 . No two permutations can be associated with the same pair, and

thus, we have (oPt / IC) 2 >_ Ž11 or IPl / ICI Ž_ v/[-I. N

Another observation made by Fiduccia [28] involves the maximal number of chips reachable

in one clock tick from any given chip in a uniform architecture. (See also [48, p. 3081.)

Theorem 4 Any uniform permutation architecture with k pins per chip has ezactly k pins per

bus, and each chip is connected to at most k(k - 1) other chips.

Proof. If there is a bus with more than k pins, then two pins on the bus must have the

same label, contradicting Condition 4 of Definition 4. Now, since for uniform architectures the

number of busses is equal to the number of chips, each bus must have exactly k pins. Moreover,

since any chip is connected to at most k different busses (via its k pins), each of which is

connected to no more than k - 1 other chips, the number of neighbors of a chip is at most

k(k - 1). E

A permutation architecture can often nonuniformly realize many more permutations than

the square of the number of pins per chip. As an example, consider a "crossbar" architecture

of n chips and n busses where each chip is connected to each bus. This architecture can

nonuniformly realize all n! permutations, which is much greater than n2 , the square of the

number of pins per chip. In Section 2.7.3 we discuss some of the capabilities of nonuniform

permutation architectures.
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2.3 Difference covers

In this section, we present our main theorems which establish the relationship between differ-

ence covers for permutation sets and uniform permutation architectures. We also prove some

theorems concerning the design of general difference covers and difference covers for Cartesian

products of permutation sets. Finally, we present an alternative representation for difference

covers called substring covers based on similar notions in the literature of difference sets.

2.3.1 Difference covers and uniform architectures

We first provide a generalization of Definition 1 to arbitrary sets of permutations.

Definition 5 A difference cover for a permutation set H is a set 4' = 100,1, .... k-1} of

permutations such that for each 7r E II there exist OO E 4' such that r = O-i.

Equivalently, we can use our product-of-sets notation to say that 4 is a difference cover for II

if 4-14 D• H.

The following theorems show how difference covers and uniform architectures are related.

Theorem 5 describes how to design a uniform architecture for a permutation set 11 when a

difference cover for II is given. Theorem 6 presents a construction of a difference cover for a

permutation set fl from a uniform architecture for IH.

Theorem 5 Let II be a permutation set, and let 4' be a difference cover for II such that I41 = k.

Then there ezists a uniform architecture for II with k pins per chip.

Proof. Let 4 = f00,0 -. .,Ok-l}, and assume that II is a set of permutations on n objects.

We construct a permutation architecture for II with n busses and k pins per chip. We name

the chips and busses of the architecture by natural numbers, and the pins by pairs of natural

numbers. The architecture A = (C,B,P, cBIP, BUS, LABEL) is defined as C = [n], B = [n],

P = [n] x [k], cHIP(c, i) = C, LABEL(c, i) = i, and BUS(C,i) = 0 LABEL(c,i)(CBIP(C,i)) =•i(0)

That is, chip c is connected via its pin number i to bus Oi(c).

To see formally that this architecture uniformly realizes II, let ir E II be a permutation, and

let O,,O E 4 be elements of the difference cover for II such that 7r = 4'j1 O. Define the write

function for 7r as WRITE , (c) = (c,i) and define the read function for ir as iEADf(C) = (c,j).
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(Note that i and j are always in the range 0 through k - 1.) We now verify that the five

Conditions of Definition 3 are satisfied. Condition 1 holds since for any chip c E C we have

CHIP(Wn.ITE 7 (C)) = CHIP(C,i) = c, and CHIP(READ 1 (C)) = CHIP(C,j) = c. Condition 2 is

satisfied since for any chip c E C we have

BUS(WRITE,(C)) = BUS(C,i)

0=0 4"mc)=

=

= BUS(r(c),j)

= BUS(READ,(1(C))).

Condition 3 holds because if BUS(WLITE,(cl)) = BUS(WRITE,(c2)) for any two chips c1, c2 E C,

then we have o,(cl) = 0&,(c 2), which implies that cl = c2, since Oi is invertible. Conditions 4

and 5 both hold since LABEL(WRITE,(C)) = i and LABEL(READ,(C)) = j for all chips c E C. We

therefore conclude that the architecture A uniformly realizes H1. The architecture is uniform,

but Theorem 2 obviates the need to show this fact. U

Given a difference cover of small cardinality, Theorem 5 says we can construct a uniform

architecture with few pins per chip. In fact, the reverse is true as well, as the following theorem

shows.

Theorem 6 Let II be a permutation set, and let A be a uniform architecture for 11 with k pins

per chip. .Then II has a difference cover , such that 141 < k.

Proof. Given a uniform architecture A = (C, B, P, CHIP, BUS, LABEL) for the permutation set

fl, where k is the number of pins on each chip, we construct a difference cover 0 for 11 as

follows. Assume without loss of generality that C = B = In] and range(LABEL) = [k]. For

each pin number i, where i = 0, 1,..., k - 1, we define 0i by Oi(c) = b if and only if chip c is

connected via its pin number i to bus b. We now define the difference cover $ to be the set

0' = fO, ..,. -0k-i}. (The set 0 may have less than k elements, since some permutations

may be repeated among the 0,'s.)
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To see that 40 is a difference cover for 11, consider any permutation r E 11. Since A

uniformly realizes ir, there exists a pair of pin labels (ij) such that 7r is realized by each

chip writing to its pin numbered i and reading from its pin numbered j. The labels i and j

satisfy i = LABEL(WRITE,(c)) and j = LABEL(READ,(C)) for all chips c E C, as follows from

Conditions 4 and 5 of Definition 3. Conditions I and 3 of Definition 3 imply that O', and Oj are

both permutations, and therefore there are 0%, 01 E t such that 4h = Oi and 01 = 4j. Finally,

Condition 2 of Definition 3 implies that 7r = -i= 0710h, which proves that t is indeed a

difference cover for 11. U

2.3.2 Designing difference covers

Theorems 5 and 6 show that uniform architectures and difference covers are very closely related.

Thus, when designing a uniform permutation architecture for a set of permutations, it suffices

to focus on the problem of constructing a good difference cover for that set.

We first present a simple theorem that demonstrates that any arbitrary permutation set I1

has a difference cover of size at most (IT( + 1.

Theorem 7 Let 11 be an arbitrary permutation set on n elements. Then II has a difference

cover of size at most 111 + 1.

Proof. Define 4 = II U {1n}. For any r E I1, we have r = I; 1•r, where r,I,, E t. Therefore,

4' is a difference cover for II, and 101 - 1111 + 1. E

Theorem 7 presents a naive construction of a difference cover for an arbitrary permutation

set 11. In general, the bound of Theorem 7 cannot be improved without specific knowledge about

the structure oT the permutation set involved. In [30], Fiduccia describes how to construct a

permutation set 11 of arbitrary size, for which no difference cover of cardinality 11I1 exists. This

shows that the construction of Theorem 7 is optimal for general permutation sets.

Specific knowledge about the structure of a permutation set can indeed be helpful in ob-

taining a small difference cover for it. In Sections 2.4 and 2.5, we investigate the construction of

difference covers for cyclic groups of permutations and for groups in general. Here, we examine

permutation sets formed by Cartesian products.
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Definition 6 Let IT, be a set of permutations from X, to X1 , and let 112 be a set of permu-

tations from X2 to X2. The Cartesian product 11 = 1i, x 112 is the set of permutations from

x XX 2 to X1 X X 2 defined as I T {(U1, V2) : KI E 111, 72 E 112}. Operations on the elements

of 11 are performed componentwise.

The Cartesian product 11H x 112 is isomorphic to the Cartesian product 112 X H1. The

Cartesian product 11 = 11, 112 is an abelian permutation set if and only if both HI and 112

are abelian permutation cets.

The next two lemmas provide bounds on the size of difference covers for Cartesian products

of permutation sets.

Lemma 8 Let 11, be a permutation set on n, objects, and let 112 be a permutation set on n 2

objects. Then the Cartesian product 11 = H1 × 112, which is a permutation set on n, • n2 objects,

has a difference cover of size I1111 + 11121.

Proof. Let # be the union of {(jI 1', 1 2 ): :7r E III} and {(In,,w2) : 72 E 112}. Each permu-

tation 7r = (irl, 2) E 11, can be represented as (rl,r2) = (ir•j'1,,2)-' (- M,, 2), where both

(•r-', In,) and (In , r2) are in $0. Thus f is a difference cover for HI, and the size of t is exactly

IIIII + 11121.

Lemma 9 Let 11, be a permutation set on n, objects with a difference cover 01, and let 112

be a permutation set on n 2 objects with a difference cover 42. Then the Cartesian product

4) = 0 1 X t2 is a difference cover for 11 = H1 X 112.

Proof. For each r = (1l,1r2) E 1H, there exist Oi,,Oi, E 41 such that 7r, = and

there exist 0j2,,4• E '02 such that ir = •12~ 3* We then have (r0,2r 2 ) " l -

(• ,•j2)- 1 (•I,2), where both (•2,4,2) and (0j?,2h) are in 4 = 41 x 42, and hence t is a

difference cover for fl. U

To demonstrate both the use of difference covers and of Lemma 9, we present in Fig-

ure 2-2 a uniform permutation architecture due to Fiduccia [281 for realizing shifts in

a two-dimensional array. The architecture uniformly realizes the permutation set H =

{I, N, E, S, W, NE, SE, NW, SW) of eight compass directions plus the identity I. We introduce



36 CHAPTER 2. BUSSED PERMUTATION ARCHITECTURES

two permutation sets fl = {I, N, S}, 2 = {I, E, W}, and corresponding difference covers

.1 = {I, N} and 42 = f1, E}. The Cartesian product II X 112 is II, and the set of permutations

4" 41 x 0 2 {I, E, NE, N} is a difference cover for H1.

0 0d 1 0 1

[: :1

3 2 3 23

0 1 0 1

Figure 2-2: A uniform architecture due to Fiduccia [28] based on the difference cover {I, E, NE, N} for
the permutation set IH = {I, N, E, S, W, NE, SE, NW, SW).

2.3.3 Substring covers: an alternative notation

We conclude this section by defining the notion of a substring cover for a permutation set 11,

which is equivalent to the notion of a difference cover. (A similar notion for difference sets is

well known in the literature [14, 66].)

Definition 7 An ordered list E = (o0, O1,... ,ck-1) of permutations is a substring cover for a

permutation set II if

1. GaOOl ... .k-I = I, and
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2. for all ?r E H, there exist 0 5 ij < k - 1 such that r = ao'a'+j ... o, where the arithmetic

in the injices is performed modulo k.

The substring cover E is a list of permutations such that all the permutations in II can be

represented as a composition of a substring of permutations of E. The following two theorems

show that the notions of a substring cover and a difference cover are equivalent.

Theorem 10 Let II be a permutation set on n elements, and let E be a k-element substring

cover for II. Then II has a difference cover t with at most k elements.

Proof. Given a k-element substring cover E = (ao a,,.. .,ako-) for II, a difference cover 4)

with at most k elements can be constructed. For each 0 < i < k - 1 we define Oi = aooal .-. ai.

If a permutation r can be represented as r = aiai+ ... aj, then •r = -j. By construction,

the difference cover t has at most k elements.

Theorem 11 Let II be a permutation set on n elements, and let f be a k-element difference

cover for H. Then II has a substring cover E with k elements.

Proof. Given a k-element difference cover 6 = {100, 0 .. ,1 -} for H, we build a substring

cover E for II by defining ai = 0-1•i for all 0 < i < k - 1. The product aool ... o'k-1 yields

the identity permutation. For each 7r E 1, if 7r = 0-1, then 7r = 'i+1ai+2 ... aj. Therefore E

is a substring cover for 11 with k elements. a

Referring back to the example of the eight compass directions, we present a substring

cover for the permutation set II = {I, N, E, S, W, NE, SE, NW, SW}. The substring cover . =

(S, E, N, W) is constructed from the difference cover 4 = {I, E, NE, N} that was used in the

architecture of Figure 2-2. Each of the eight compass directions can be realized as a substring

of the list E = (S, E, N, W).

As another example, consider the permutation set II = {I, N, E, S, W} of the shifts in a

2-dimensional array corresponding to the four compass directions. This permutation set has

a difference cover 0 = {I, SE, S} and a corresponding substring cover E = (N, SE, W). Con-

sequently, there is a uniform architecture for realizing the four compass directions with three

pins per chip, as has been observed by Feynman [36, pp. 437-438]. Figure 2-3 presents a

uniform architecture based on the difference cover t = {I, SE, S) for the permutation set

n = {I,N,E,S,W).



38 CHAPTER 2. BUSSED PERMUTATION ARCHITECTURES

0 0 0 0

Figure 2-3: A uniform architecture dlue to Feynman [36] based on the difference cover {I, SE, SI for
the permutations set 1" = {I, N,E,S,W.

2.4 Cyclic shifters

This section describes uniform architectures for realizing cyclic shifts among n chips in one

clock tick. We first present a difference cover of size O(v'•) for the set of all n' cyclic shifts on

n elements, and we give an area-efficient layout for the corresponding permutation architecture

suitable for implementation as a printed-circuit bo• :d. When n can be expressed as n -

S1, where is a power fa we the on the size of a cover

for all cyclic shifts on n elements to the optimal value of n Finally, we prove that for any

cyclic shifter that operates in one clock tick (even a nonuniform one), the average number of

pins pechip is at least [u/ir].
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2.4.1 General difference covers for cyclic shifts

The first permutation architecture for cyclic shifters that we present is based on the construction

in the following theorem.

Theorem 12 The set of n cyclic shifts on n elements has a difference cover of size at most

2r n- 1.

Proof. Since the set of n cyclic shifts on n elements forms a group, and since this group is

isomorphic to the group Z,, we shall construct a difference cover D for Z,. For convenience.

let m = VK/i. Define two sets A = {O,1,...,m- 1} and B = {O,m,2m,. .,(m- 1)m}, and

let the difference cover D be defined by D = A U B. Each element s E Zn can be realized as

s = b-a (modn), where a E A and bE B by taking a = m- (s mod m) and b = [s/mi .m, as

can be verified. The size of the difference cover D is 2m - 1 = 2 r[/'Ai - 1, since the element 0

occurs in both A and B. U
The difference cover constructed in the proof of Theorem 12 corresponds to an architecture

with a regular, area-efficient layout, as shown in Figure 2-4. The n chips of the architecture

are laid out in an array consisting of m = Vn rows, each containing 1/ii chips. (For simplicity,

we assume that n is a square.) Each chip has pins 0, 1,...,m - 1 on the top side, and pins

m, m + 1,..., 2m - 1 on the left side. Each bus consists of one vertical segment and one or two

horizontal segments. Each wiring channel consists of m = ., tracks, where each track is used

to lay out segments of busses. When n is not a square, a cyclic shifter on n chips can be laid

out in a similar fashion, with each wiring channel having at most 2 [v/'6 tracks. The side of

the layout is therefore O(n), since there are rvfn chips and rWin wiring channels along the

side. The-area of the layout is O(n 2), which is asymptotically optimal since any architecture

that can realize any of the cyclic-shift permutations in one clock tick requires area fl(n 2) [83,

p. 56].

Remark. The bound of 2 rv/W1 - 1 pins per chip can be improved to (VA2 + o(1))Vf¶, as

was observed by Mills and Wiedemann [68]. See Section 2.7.4.

Occasionally, it is desirable to implement a subset of the cyclic shifts on n elements. The fol-

lowing corollary to Theorem 12 shows that when the shift amounts form an arithmetic sequence,

a small difference cover exists.
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2.4.2 Optimal difference covers for cyclic shifts

Returning to the problem of implementing all n cyclic shifts on n elements, the f3llowing

theorem demonstrates that for certain values of n, the optimal fVI bound can be. obtained..

Theorem 14 The set of n cyclic shifts on n elements has a difference cover of ui• F[-] if
n = q2 + q + 1, where q is a power of a prime.

Proof. As in the proof of Theorem 12, the problem is equivalent to that of constru•cting a

difference cover D for Z,. When n is the size of a projective plane (n = q2 + q + 1, where- q is a.

power of a prime), this problem is equivalent to the problem of constructing a difference set.. The

difference set we give is due to Singer; a proof of its correctness is given in Hall [43, p. I29].. Let x

be a primitive root of the Galois field GF(q3 ), and let F(y) be any irreducible cubixt polynomial'

over the Galois field GF(q). We construct a difference cover D for Z,, from the set [njby choosing

those i E [n) such that the power xi can be written in the form zi = ax + b (muodF(x)) for

some a, b E GF(q). B

The construction of a uniform architecture based on a projective plane can be inserpreted

as follows. The n points of the projective plane correspond to the n chips, and the n lines of the

projective plane correspond to the n busses. Each line contains q + 1 points, whick mems that

each bus is connected to q + 1 chips. Each point is incident on q + 1 lines, which means that

each chip is connected to q + 1 different busses through its q + 1 pins. For example,. Figure Z-L

demonstrates a uniform architecture based on the projective plane of size 13.

Theorems similar to Theorem 12 (but without application to architecture) appear ihr the

combinatorics literature: see, for example, [56]. Bus connection networks based an. prajecti.vL

planes have also been studied by Bermond, Bond, and Scali [11] and by Mickunaa [64,. whi

observed that projective planes can be used to construct hypergraphs of diameter one.

2.4.3 Lower bound for cyclic shifters

Uniform architectures for cyclic shifters based on projective planes achieve the minimal number

of pins per chip among all uniform cyclic shifters. We now prove a lower bound of rV1- on the

average number of pins per chip for any permutation architecture that realizes all the cyclic

shifts. This lower bound applies to all permutation architectures, including nonuniform ones.
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and shows that uniform cyclic shifters based on projective planes are optimal among all cyclic

shifters that operate in a single clock tick.

Theorem 15 Let A = (C,B,P, CHIP, BUS, LABEL) be a permutation architecture for the n

cyclic shifts on n chips. Then the average number of pins per chip is at at least [ Vin 1.

Proof. The average number of pins per chip is IPI /n. We shall prove that IPI Ž_ n Rv/] which

implies the theorem. We adopt the following conventions for notational convenience:

1. The set of busses is B = {bo, bl,..., bm_-.}. We denote by ki the number of pins connected

to bus b,, that is, ki = ({x E P : BUS(z) = bi)J.

2. The busses that have at least rv'i1 pins each are indexed first, that is, if there are r

busses with at least r'nI pins each, then k, > [vrn] for i = 0,. . ., r - I and k, < rv/'-i
for i = r,...,m- 1.

The thrust of the proof is to count the number of distinct data transfers when the architec-

ture realizes each of the n - I nontrivial shifts in turn. (The identity permutation is a trivial

shift.) Each chip can be mapped to each other chip by one of the cyclic shifts, i.e., the cyclic

shifts form a transitive group of permutations. Considering only the n- 1 nontrivial shifts, there

are exactly n(n - 1) distinct data transfers that must be implemented through interconnections

in the architecture.

We compute an upper bound on the number of distinct data transfers that the busses can

implement. Each of the first r busses b0,..., b,-I can be employed to realize at most one

distinct data transfer in each of the n - I nontrivial shifts. Thus, at most r(n - 1) distinct data

transfers can be carried out by the first r busses. Any other bus 6i, where r < i < m - 1, can

realize at most ki(ki - 1) distinct nontrivial data transfers, since it has only ki pins connected

to it. Thus, the total number of distinct data transfers that the busses can realize is

r(n - 1) + k(k - 1),

which must be larger than n(n - 1) if all nontrivial shifts are to be realized. Hence, we have

rn-1
E k,(k, - 1) > (n - r)(n- ).

.. .
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We can use this inequality to bound the number of pins on all busses with fewer than rv'n-i
pins. We have k,-1 r- v'I - 2 for i = r,..., m - 1, and thus

Yn-i in-1

Zk, 1iki__ - r/n -2 i__
> (n- r)(n- 1)

> (n- r) rl •

We now bound the total number of pins in the architecture from below. We have

rn-1

1P1 = E k
i=O

r-- 1 m-- 1= Ek, + E ki

> r rv, 1 + (n-,r) r[ I
= n ri1,ý,n

which proves the theorem. U

2.5 Difference covers for groups

In this section we show that small difference covers for abelian and nonabelian permutation

groups exist. Specifically, for any abelian permutatior group II with p elements, we apply the

decomposition theorem for finite abelian groups and the results for cyclic shifters in Section 2.4.

and we show the existence of a difference cover of size O(V/p-), which is optimal to within a con-

stant factor. For a general permutation group II with p elements, we give a greedy construction

of a difference cover with O(V'pTg3) elements. Finkelstein, Kleitman, and Leighton [31] have

recently improved our result for general groups to O(V"-).

2.5.1 Abelian groups

We first show that if a permutation set forms an abelian group with p permutations, then a

difference cover of size 0(,/p) can be constructed.

Theorem 16 For any abelian group 11 with p elements, there evists a difference cover t of

size at most 3y•.



44 CHAPTER 2. BUSSED PERMUTATION ARCHITECTURES

Proof. Assume without loss of generality that p > 1. By the decomposition theorem for finite

abelian groups [58, p. 133], any abelian group 1I is isomorphic to a cross product of cyclic groups

11 ;. Zp, x Zp x ... x ZP,

where piP2 "Pk = p, and each pj ? 2. Let i be the unique index such that piP2" "pi "-< I :/

and Pi+ IP+2"" Pk < .1p, and let m = [vr/P1Pp2 "pi-il. Using the argument of Theorem 12,

we first construct a difference cover for ZP, from the union of two sets Ai and Bi, where lA,[ I r m

and JB.1 <_ Lpi/mj, such that each element of Zp, can be expressed in the form b - a (modp,)

or a - b (mod p,), where a E Ai and b E Bi.

We now construct a difference cover for 11 - Zp, x Zp x .-. x Zp, from the union of two

sets A and B, where

A ,z ZP, x Z.x ... x Zp,_1 x A1 ,

and

B : B, x Z*,,, x 4+2 x ... x ZPk.

That A U B is a difference cover for II follows from essentially the same argument as is used in

Lemma 9. The size of the difference cover A U B is IAI + 1B[. The size of A is

IAI = pip2 ... pi-.I Aj

P1 p>2 ... p,..IM

SPIP2 .. P~i- [v5P/1P2 .. A1
<_ +P i P u"Pi- i

<5 V'P + PP . -

<_ 2vrp.

Similarly, the size of B is

IBI = lBsIPi+1Pi+2 ""P k

<_ Lpi/mJ Pi+lP,+2""Pk

< (Pi/Iv/'P/PIP2"''p.-1)pA+IP4+2"'.Pk

< (PIP2""Pi/'fP)Ps+1Pi+2"'Pk

= d rep

Consequently, the size of the difference cover for 11 is at most 3V/• I
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2.5.2 General grour

The next theorem gives a method for constructing small difference covers for general groups of

permutations.

Theorem 17 Let II be an arbitrary group with p elements. Then Hl has a difference covert

of size at most v/Tiip + 1.

Proof. We construct a difference cover incrementally starting with a partial difference cover

t= = {I}. At each step of the construction, we select an element Oi+ E II such that

*-'(t, U 10,+1)I maximizes It-1(t, U 7rl))I over all 7r E II. We then define the new partial

difference cover as t,+j = 4, U 10i+1}.

The analysis of this construction is in three parts. We first determine a lower bound on the

number of elements of II that are not covered by the partial difference cover 4, but are covered

by tj+j. We then develop a recurrence to upper bound the number of elements of the group

II that are not covered at the ith step. Finally, we solve the recurrence to determine that the

number k of iterations needed to cover all elements in II is at most v'2•1Wp + 1.

We first determine how many new elements of II are covered when 4 i is augmented with

0,+j to produce t,+, for i > 1. Let the set A, be the set of elements that are not covered by

the partial difference cover 4,, which can be defined as Ai = II - 4- 10,. Consider triples of

the form (6,6,7r) such that 0 E 4i, 6 E A,, 7r E I, and #= r. Observe that for any fixed

7r E II and 6 E A,, there is at most one triple of the form (4,6, r) in the set of triples, namely

(r6- 1 ,6, 7r) when 7r6- 1 E 4,. For a fixed 7r, the number of triples (0,6, r) in the set of triples

is a lower bound on the number of elements covered by 46 U {r) but not by 40j, since we have

6 = 0-1Ir.and 6 E Ai = II - 4 14,. For each 0 E 0i and 6 E Ai, there is exactly one triple

in the set of triples, and thus there are exactly Ifi[ • jA4 triples. Since there are at most lill

distinct permutations appearing as the third coordinate of a triple, the permutation O,+l that

appears most often must appear at least 4,1" IA,! / III times, and hence at least this many

elements are covered by 4,+1 that are not covered by 4,.

We can now bound the number of elements not covered by 4,4+1 in terms of the number of

elements not covered by 4, by

A+11 5< l - 1,1i l
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pI ft(1 -)

When we obtain IJAkI < 1 for some k, the partial difference cover 41, is a difference cover for R1

because Ak is empty. Thus, Ok is a difference cover when

k - 1 
jPrI - _

or equivalently, when

k-1 p
lnp + E la 1 - _ .

Using the inequality In(l + z) _< z, we have

k-1 k_1

lnp+Ela 1-_ •

1 k-I
= lnp- Ej

Pj=1

< n lp (k -1)2
2p

< 0.

Thus, §k is a difference cover when k > vf1Kp + 1.

This proof'of Theorem 17 provides a construction which can be implemented as an deter-

ministic, polynomial-time algorithm with 0(p2 lg p) algebraic steps. We could also have proved

the theorem by relying on the result of Babai and Erd6s [4] that any group has a small set of

generators, but this method would have produced only an existential (nonconstructive) result.

Finkelstein, Kleitman, and Leighton [31] have recently improved our result for general groups

to O(Vp/). Their proof uses a folk theorem [25] that every simple group of nonprime order p

has a subgroup of size at least V/p. The folk theorem is proved by checking each type of group

in the classification theorem [39, pp. 135-136].
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2.6 Multiple clock ticks

In this section, we discuss uniform permutation architectures that realize permutations in sev-

eral clock ticks. By using more than one clock tick, further savings in the number of pins per

chip can be obtained. We first generalize the notion of a difference cover to handle multiple

clock ticks. We then describe a cyclic shifter on n chips with only 0(nl/21 ) pins per chip that

operates in t ticks.

2.6.1 The notion of a t-difference cover

We first generalize the notion of a difference cover to handle realization of permutations in t > 1

clock ticks.

Definition 8 A t-difference cover for a permutation set H is a set 4 of permutations such that

D II.

Using a t-difference cover -6 for the permutation set II, any permutation ir E II can be

expressed as the composition of t differences of permutations from f. The next lemma relates

t-dlifference covers to permutation architectures that uniformly realize permutations in t clock

ticks, for general values of t.

Lemma 18 Let 4 be a t-difference cover with k elements for a permutation set 11. Then there

is a permutation architecture with k pins per chip that uniformly realizes f1 in t clock ticks.

Proof. We define the permutation set E = *-It. Let A = (C, B, P, CHIP, BUS, LABEL) be the

permutation architecture, based on the difference cover 0, that uniformly realizes E. Hence, the

permutation architecture A can uniformly realize any a E E in one clock tick. Each permutation

7r E fl can be expressed as X' = at-lat-2 -... ro, where ai E E for 0 < i < t - 1, since we have

Et = (6-14)t D R. In order to realize ir in t clock ticks, the permutation architecture A

uniformly realizes ai in clock tick i for 0 < i < t - 1.

2.6.2 Constructing t-difference covers for cyclic shifters

Lemma 18 claims that the problem of uniformly realizing a permutation set 11 in t clock ticks

can be reduced to finding a permutation set E such that El D 11, and then finding a difference
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cover for E. The great advantage of using more than one clock tick is in the further savings

in the number of pins per chip. The following theorem, for example, describes a construction

of a t-difference cover of size O(n1/ 2t) for the set of cyclic shifts on n objects. This result can

be used to build a uniform architecture on n chips with only O(n 1 /21) pins per chip that can

realize any cyclic shift on the n chips in t clock ticks.

Theorem 19 For any n > 1 and t > 1, the permutation set of all the n cyclic shifts on n

objects has a t-difference cover of size O(nl/2t).

Proof. For the purpose of the proof, we denote the permutation set of all the n cyclic shifts

on n objects by rln. (We remind that ln :-- Zn.) We first treat the case for those n such that

there exists an integer m satisfying n1/t < m < 4nl/t and gcd(m, n) = 1. We then use this case

to extend the proof to all values of n.

Since gcd(m, n) = 1, there exists an m- 1 E Z, such that m -m- 1 = 1 (mod n). For each

r E [m], define the permutation a, : [n] -- [n] as ar(c) - m- 1 (c + r) (modn), and define the

permutation cr : [n] -* [n] as a'(c) = mt-l(c + r) (mod n). Next define the permutation set

E = {ar} U {la}. The set {fa} is an arithmetic sequence of cyclic shifts on n elements (as in

Corollary 13) followed by the fixed permutation corresponding to multiplication by m-1, and

thus {fr} has a difference cover of size O(v'm ). Similarly, the set {oa, has a difference cover of

size O(Vm'm ). Combining the two difference covers for {oar} and {oa}, we get a difference cover

f of size O(V'ii) = O(n1/2t) for E.

We now show the inclusion Et D HI,. Let ir E ln be a permutation of a cyclic shift by

s. We express the shift amount s E [n] as . = so + sm + +- -- + -at-lmtl, where si E [m] for

0 < i < t - 1. The permutation r can be described as

ir(c) = c+s (modn)

= c+bo + s3m +.-* + st.-.m- 1 (modn)

= m'- 1 (stJ + m-n (s_ + .+ m- (so-+ c))) (mod n)

- Oa.-....0(c),

which proves that r E V. Hence, we get the inclusion V lD lin, which together with the fact

that there is a difference cover # of size O(ni/2t) for E, proves the theorem for the case when

there exists an integer m satisfying nl/t < m < 4n'/' and gcd(m,n) = 1.
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Sich an m need not exist for every n and every t, however. We can overcome this difficulty

by factoring n = njn 2 such that nj consists of no even-indexed primes (3, 7, 13, ... ) and n2

consists of no odd-indexed primes (2, 5, 11, . . .). Since we have gcd(nl,n 2 ) = 1, we can use the

Chinese remainders theorem to express Zn as a Cartesian product Z, % Z," x Zn. We let m1

be the first even-indexed prime at least as large as ,1 and let m2 be the first odd-indexed
1/tprime at least as large as n2/. Bertrand's postulate [44, p. 343] guarantees that for every z,

there is a prime between x and 2x, which means mj E In 1, 4n1/] for j = 1,2. (Tighter bounds

are possible.)

We can now use the previous construction to construct a t-difference cover $1 of size 0(n,

for Z,,,, which is isomorphic to lInj and a t-difference cover t2 of size O(n•/2t) for Z,12, which

is isomorphic to II,,2. Using the same technique as in the proof of Lemma 9, we can construct
a t-difference cover of size O(n1/2t) . (n1/2t) = O(nl/2t) for Zn, × Zn, . Z, .I

One can rather straightforwardly use Corollary 13 to obtain a t-difference cover of size

O(tnl/ 21). Based on the representation of the shift amount 3 = so + slm + .. + .t 1rmt -1 , one

can come with t separate difference covers, each of size O(n 1 /2 t), for the t separate sequences

of arithmetic shifts by {srni * 8 E (m]} for 0 < i < t - 1. Theorem 19 avoids the extra factor

of t by constructing only one such difference cover and using its elements for each one of the t

differences.

2.7 Applications and extensions

This sectiob contains some additional results on permutation architectures and difference cov-

ers. We describe efficient uniform architectures that can realize the permutations implemented

by various popular interconnection networks, including multidimensional meshes, hypercubes,

and shuffle-exchange networks. We extend the lower bound technique of Section 2.4.3 to general

permutation sets. We examine nonuniform permutation architectures, and adapt some com-

binatorial results in the literature to apply to permutation architectures. Finally, we describe

directions for further research and some related work brought on by an earlier version (48] of

this research.
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2.7.1 More networks

By using busses, many popular interconnection networks can be realized with fewer pins than

conventionally proposed. Here, we mention a few.

The permutation architectures for realizing compass shifts on two-dimensional arrays can

be extended in a natural fashion to d-dimensional arrays. For the d-dimensional analogue

of the shifts {I, N, E, S, W}, there is a uniform architecture that uses only d + 1 pins per

chip to implement the 2d + 1 permutations. For the d-dimensional analogue of the shift-

{I, N, E, S, W, NE, SE, NW, SW}, there is a uniform architecture with only 2 d pins per chip that

implements all 3 d shifts. (These results were independently obtained by Fiduccia [29, 30].)

A Boolean hypercube of dimension d is a degenierate case of a d-dimensional array. Only

d + 1 pins per chip are required by a permutation architecture that uses busses, whereas 2d pins

per chip are needed if point-to-point wires are used. (To realize a swap of information across

a dimension in one clock tick, each chip requires two pins for that dimension: one to read and

one to write.) It is interesting to mention that in the case of the d-dimensional hyperc-ibe, the

permutation set consists of d permutations of swapping data across each of the d dimensions.

For this case, Fiduccia [30] shows that d + 1 pins per chip is the least possible.

A permutation architecture that implements the permutations Shuffle, Inverse Shuffle, and

Exchange can be constructed with three pins per chip instead of the usual four. This can be

done by taking the set of three permutation: Identity, Shuffle, and Exchange, which forms

a difference cover for the desired permutation set. Furthermore, we can also implement the

Shuffle-Exchange and Inverse Shuffle-Exchange permutations in one clock tick as well.

2.7.2 Average number of pins per chip

Theorem 15 presents a lower bound on the average number of pins per chip in any cyclic shifter

that operates in one clock tick. The following theorem is a natural extension of Theorem 15 for

a general set of permutations.

Theorem 20 Let II be a permutation set on n objects with p permutations and with total

of T nontrivial data transfers, and let A = (C, B, P, cHIP, BUS, LABEL) be any permutation

architecture for realizing II. Then the average number of pins per chip is at least T/nv/p.



2.7. APPLICATIONS AND EXTENSIONS 51

Proof. As in the proof of Theorem 15, we prove that ]Pj > T/lvp which implies the theorem.

We make similar notational conventions:

1. The set of busses is B = {bo,bbl,...,b,m.-}. We denote by ki the number of pins connected

to bus bi.

2. The r busses that have at least vp pins each are indexed first, that is ki > rp for
i = 0,..., r- 1 and ki < rp for i = r,..., m- 1.

We count the number of distinct data transfers that can be accomplished by each bus. Each

of the first r busses can be employed to realize at most p out of the T nontrivial data transfers,

since it can be used at most once for each of the p permutation. Any other bus bi, where

r < i < m - 1, can realize at most ki(ki - 1) out of the T nontrivial data transfers, since it has

only ki pins connected to it. We need to have E!'-' ki(ki - 1) > T - rp, which implies

,n-1 ki > T - rp
ET --

_ T
rye.

The number of pins in the architecture can now be bounded as follows:

rn-1

JPl = ki
i=O
r-I m-I

T

Theorem 20 demonstrates that uniform architectures can achieve the optimal number (to

within a constant factor) of pins per chip for certain classes of permutation sets. When there

are relatively few permutations that are responsible for many nontrivial data transfers, the

average number of pins per chip is high. The set of cyclic shifts is an example of this kind of

permutation set.
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2.7.3 Nonuniform architectures

When the uniformity condition on permutation architectures is dropped, one can do much better

in terms of the number of pins per chip. The complexity of control may increase substantially,

however, due to the irregular communication patterns and the number of possible permutations

realizable for some of the architectures. Nevertheless, from a mathematical point of view,

nonuniform architectures are quite interesting.

In fact, nonuniform architectures have been studied quite extensively in the mathematics

literature in the guise of partitioning problems. For the problem of realizing all n! permu-

tations on n chips, a result due to de Bruijn, Erd6s, and Spencer [84, pp. 106-108] implies

that O(V/'_1-n) pins per chip suffice. The nonuniform architecture that achieves this bound is

constructed probabilistically, however. It is an open problem to obtain this bound deterministi-

cally. The best deterministic construction to date is due to Feldman, Friedman, and Pippenger

[261 and uses 0(n2 /3 ) pins per chip.

2.7.4 Further research

We list a few of the problems that have been left open by our research. We also describe briefly

some further work brought on by an earlier version [48] of this research.

In Section 2.4 we described a difference cover of size 2 fv/'ln - 1 for the cyclic group Zn,

and proved that when n is the order of a projective plane, there is a difference cover of size

[V/'n]. It seems reasonable that any cyclic group Z, might actually have a difference cover of

size Vi + o(,/'n), but we have been unable to prove or disprove this conjecture. Mills and

Wiedemann [671 have computed a table of minimal difference covers for all the cyclic groups of

cardinality up 4o 110. For any value of n up to 110, the difference cover they find has at most

r[V•n + 2 elements. In [681, they provide a "folk theorem" that establishes a stronger upper

bound for the general case than 2 rv/i - 1.

Theorem 21 The set of n cyclic shifts on n elements has a difference cover of size
(2 + l)V.

Sketch of proof. [68] Let q be the smallest prime such that I = q2 + q + 1 > n/2. We have

q = (1 + o(1))V/Ai7, since for large z, there exists a prime between z and z + o(z). Let
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{d di0 ,...,dq} be a difference cover for ZI chosen as in Theorem 14. It can be verified that the

set {do, dl,...,dq} u {do +1,d, + l,...,dq + 1} forms a difference cover for Z,. U

Another interesting problem related to cyclic shifters involves finding an area-efficient VLSI

layout of the cyclic shifter based on projective planes. In section 2.4 we presented an area-

efficient layout using a difference cover whose size is twice the optimal size. Is there a good

layout for the pin-optimal design?

To implement cyclic shifters that operate in t clock ticks, we showed how to construct a

t-difference cover for Z,, of size Q(nl/2t). A simpler construction achieves the bound O(tnl/2t).

Theorem 15 gives a lower bound of rvfni on the average number of pins per chip for a cyclic

shifter that operates in one clock tick. It may be possible to prove a lower bound of fl(n1/2t) on

the average number of pins per chip when an architecture operates in t clock ticks, but we were

unable to extend the argument. We were also unable to extend either of these constructions

to give good i-difference covers for groups, either general or abelian. It would be interesting

to know whether a general (or an abelian) group of permutations with p permutations has a

t-difference cover of size O(tpl/2t), for any t > 1.

We have concentrated primarily on permutation sets that have good structure, specifically

group properties. In general, when the permutation set has no known structure, the best possi-

ble upper bound is given by Theorem 7 of Section 2.3.2. It would be interesting to identify other

structural properties of permutation sets besides group properties that allow small difference

covers to exist.
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Chapter 3

Priority Arbitration with Busses

This chapter explores how busses can be used to efficiently implement arbitration mechanisms.

We investigate priority arbitration schemes that use busses to arbitrate among n modules in

a digital system. We focus on distributed mechanisms that employ m, arbitration busses, for

Ig n < rm < n, and use asynchronous combinational arbitration logic. A widely used distributed

asynchronous mechanism is the binary arbitration scheme, which with m = lg n busses arbitrates

in t = Ig n units of time. We present a new asynchronous scheme - binomial arbitration -

that by using m = Ig n + 1 busses reduces the arbitration time to t = 1 Ig n. Extending this

result, we present the generalized binomial arbitration scheme that achieves a bus-time tradeoff

of the form m = e(tnl/ t ) between the number of arbitration busses m, and the arbitration time

t (in units of bus-settling delay), for values of Ig n < m < n and 1 < t < Ig n. Our schemes

are based on a novel analysis of data-dependent delays and generalize the two known schemes:

linear arbitration, which with m = n busses achieves t = I time, and binary arbitration, which

with m = lg n busses achieves t = lg n time. Most importantly, our schemes can be adopted

with no changes to existing hardware and protocols; they merely involve selecting a good set

of priority arbitration codewords. We also investigate the capabilities of general asynchronous

priority arbitration schemes that employ busses and present some lower bound arguments that

demonstrate the efficiency of our schemes.

This chapter describes research that appeared partially in [50] and [51].

55
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3.1 Introduction

In many electronic systems there are situations where several modules wish to use a common

resource simultaneously. Examples include microprocessor systems where a decision is required

concerning which of several interrupts to service first, multiprocessor environments where several

processors wish to use some device concurrently, and data communication networks with shared

media. To resolve conflicts, an arbitration mechanism is required that grants the resource to

one module at a time.

Numerous arbitration mechanisms have been developed, including daisy chains, priority

circuits, polling, token passing, and carrier sense protocols, to name a few (see [12, 16, 22,

40, 57, 61, 78, 82]). In this chapter we focus on distributed priority arbitration mechanisms,

where contention is resolved using predetermined module priorities and arbitration processes are

carried out in a distributed manner by participating system modules. In many modern systems,

and especially in multiprocessor environments and data communication networks, distributed

priority arbitration is the preferred mechanism.

Many distributed arbitration mechanisms employ a collection of arbitration busses to im-

plement priority arbitration. To this end, each module is assigned a unique arbitration priority,

which is an encoding of its name. An arbitration protocol determines the logic values that a

contending module applies to the busses, based on the module's arbitration priority and on logic

values on the busses. After some delay, the settled logic values on the busses uniquely iden-

tify the contending module with the highest priority. In particular, the asynchronous binary

arbitration scheme, developed by Taub 179), gained popularity and is used in many modern

bus systems, such as Futurebus [17, 81], M3-bus [21], S-100 bus [35, 80], Multibus-lI [40],

Fastbus [41], and Nubus [89]. Other priority arbitration mechanisms that employ busses are

described in [12, 16, 22, 24, 47, 57, 61, 78, 82].

The asynchronous binary arbitration scheme arbitrates among n modules in t = lg n units

of time, using m = Ig n wired-OR (open-collector) arbitration busses. 1 The technology of open-

collector busses is such that the default logic value on a bus is 0, unless at least one module

applies a I to it, in which case it becomes a 1. Open-collector busses, thus, OR together the logic

'Throughout this chapter we count only arbitration busses that are used for encoding the priorities. Several
additional control busses are used by all schemes and are therefore not counted.
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values applied to them, with some time delay called bus-settling delay. In asynchronous binary

arbitration, each module is assigned a unique (Ig n)-bit arbitration priority. When arbitration

begins, competing modules apply their arbitration priorities to the m = Ig n busses, each bit

on a separate bus; the result being the bitwise OR of their arbitration priorities. As arbitration

progresses, each competing module monitors the busses and disables its drivers according to

the following rule: if the module is applying a 0 (that is, not applying a 1) to a particular bus

but detects that the bus is carrying a 1 (applied by some other module), it ceases to apply all

its bits of lower significance. Disabled bits are re-enabled should the condition cease to hold.

The effect of this rule is that the arbitration proceeds in at most Ig n stages from the most

significant bit to the least significant bit. Each stage consists of resolving another bit of the

highest competing binary priority, which leads to a worst-case arbitration time of t = Ig n (in

units of bus-settling delay).

For example, consider a system of n = 16 modules that uses m = lg 16 = 4 arbitration

busses, with the 16 arbitration priorities consisting of all the 4-bit codewords {O000, 0001.

0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}. Figure

3-1 outlines an asynchronous binary arbitration process among four such modules c2, cS, c9,

and cio, with corresponding arbitration priorities 0010, 0101, 1001, and 1010. The arbitration

process begins by the competing modules applying their arbitration priorities to the busses.

The open-collector busses, therefore, compute a bitwise-OR of the four arbitration priorities.

After one unit of bus-settling delay (stage 1), bus b-3 settles to the logic value 1, where it will

remain for the duration of the arbitration. By the above rule, each of modules c2 and cs disables

its last three bits because they each apply a logic 0 to bus b3 that now carries a logic 1. In the

meantime, however, each of modules c9 and cio disables its last two bits, because of the logic

1 they detect on bus b2. At the end of stage 2, therefore, bus b2 settles to the logic value 0,

where it will remain for the rest of the process. As a result, modules c9 and c10 now re-enable

their two low order bits (stage 3), because the conflict they previously detected on bus b2 had

disappeared, which results in bus b, settling to a logic 1 at the end of stage 3. Finally, in stage

4, module c9 ceases to apply its last bit, because of the logic value 1 it now detects on bus

bi, which results in bus bo settling to a logic 0 at the end of stage 4. This arbitration process

required t = Ig 16 = 4 stages to complete.
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Stage 1 Stage 2 Stage 3 St.'ve 4

C2 C5 CIO OR C2 CS c* co OR C2 c5 c, C91  OR cI 2o COR

Busb 3  0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1

Busb 2  0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 o 0 0 0

Busb, 1 0 0 0 111 0 0 1 0 0 1 1 0 0 1 1Bus bo 0 1 1 o , 0 _1 0_ o o 10 1 o 1 o ,1T o 1 l10 o

Figure 3-1: Asynchronous binary arbitration process with 4 busses. The competing modules are C2,

c5, cg, and Clo, with corresponding arbitration priorities 0010, 0101, 1001, and 1010. Bits in shaded
regions are not applied to the buses. The arbitration process takes 4 stages.

In this chapter we show that the asynchronous binary arbitration scheme can in fact be

improved. We introduce the new asynchronous binomial arbitration scheme, that uses one

more arbitration bus in addition to the Ig n busses of binary arbitration, but, most surprisingly,

reduces the arbitration time to 1 Ig n. In asynchronous binomial arbitration, we use (Ig n + 1)-

bit codewords as arbitration priorities and follow the same arbitration protocol of asynchronous

binary arbitration. Our binomial arbitration scheme guarantees fast arbitration by employing

certain codewords that exhibit small data-dependent delays during arbitration processes. For

example, by using the following set of 5-bit codewords {00000, 00001, 00010, 00011, 00100,

00110, 00111, 01000, 01100, 01110, 01111, 10000, 11000, 11100, 11110, 11111) as arbitration

priorities, we can arbitrate among 16 modules using 5 busses in at most 2 stages. Figure 3-2

outlines an asynchronous binomial arbitration process among four such modules cl, cs, c11 , and

c12 , with corresponding arbitration priorities 00001, 00111, 10000, and 11000 from the above

set of arbitration priorities, that completes in 2 stages. It turns out that for any subset of the

above 16 codewords, the corresponding arbitration process never takes more than 2 stages. In

Section 3.3, we show how to design a good set of codewords for general values of n by using

binomial codes as arbitration priorities.

The remainder of this chapter explores priority arbitration schemes that employ busses

to arbitrate among n modules. In Section 3.2 we discuss distributed priority arbitration and
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Stage 1 Stage 2

C1 C6 C11 C12 OR c, cI C11 c12 OR

Bus b4  0 0 1 1 1 0 0 1 1 1

Busb 3  0 0 0 1 1 o 0 o 1 1

Bus b 2  0 1 0 0 1 0 1 0 0 0

Busb, 0 1 0 0 1 0 1 0
Bus bo 1 1 1 o 0 0 1 : o 1 .2O o0

Figure 3-2: Asynchronous binomial arbitration process with 5 busses. The competing modules are
cl, c6, cj1 , and c 12, with corresponding arbitration priorities 00001, 00111, 10000, and 11000. Bits in
shaded regions are not applied to the busses. The arbitration process takes 2 stages.

formally define the asynchronous model of priority arbitration with busses. Section 3.3 describes

the two known asynchronous schemes: linear arbitration and binary arbitration, and presents

our new asynchronous binomial arbitration scheme, which with m = Ig n + I busses arbitrates

in t = Ig n units of time. In Section 3.4 we extend binomial arbitration and present the

generalized binomial arbitration scheme that achieves a spectrum of bus-time tradeoff of the

form m = e(tnh/t), between the number of arbitration busses m and the arbitration time t, for

values of 1 _< t < Ig n and Ig n < m < n. The established bus-time tradeoff is of great practical

interest, enabling system designers to achieve a desirable balance between amount of hardware

and speed. In Section 3.5 we investigate general properties of asynchronous priority arbitration

schemes that employ busses and present some lower bound arguments that demonstrate the

efficiency of our schemes. Several extensions and discussion of the results of this chapter are

presented in Section 3.6, as well as directions for further research.

3.2 Asynchronous priority arbitration with busses

In this section we discuss priority arbitration and formally define the asynchronous model of

priority arbitration with busses. The definitions in this section model typical implementations

of asynchronous priority arbitration mechanisms that employ busses.
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Arbitration is the process of selecting one module from a set of contending modules. In

asynchronous priority arbitration with busses, each module is assigned a unique arbitration

priority - an encoding of its name - which is used in determining logic values to apply to the

busses during arbitration. An arbitration protocol determines the logic values that a competing

module applies to the busses, based on the module's arbitration priority and potentially also on

logic values on other busses. The beginning of an arbitration process is generally indicated by a

system-wide signal, usually called REQUEST or ARBITRATE. The resolution of an arbitration

process is the collection of settled logic values on the busses at the end of the process, which

should uniquely identify the competing module having the highest arbitration priority.

Throughout this chapter we use the following notations and assumptions. The set C =

{co, cl,. .. . ,c-I) denotes the n system modules (chips), which are assumed to be indexed in

increasing order of priority. The m wired-OR (open-collector) arbitration busses are denoted

by B = {bo,bi, ... ,bmn-jl, where the busses are indexed in increasing order of significance

(to be elaborated later). The set P = {po,pi,.... ,Pn-1 consists of n distinct arbitration

priorities (in increasing order of priority), with pi being the arbitration priority of module c,.

Arbitration priorities are only a convenient mechanism of encoding the modules' names, and in

many asynchronous schemes the arbitration priorities are m-bit vectors that competing modules

apply to the m busses during arbitration. When necessary, we denote the bits of an arbitration

priority p by p(0), pM, pM, ... , in order of increasing significance. We assume that each module

is connected to all busses and can thus read from and potentially write to any bus. All modules

follow the same arbitration protocol in interfacing with the busses and reaching conclusions

concerning the arbitration process. Finally, we assume that only competing modules apply

logic values to the busses; noncompeting modules do not interfere with the busses. All our

assumptions are standard design practice in many systems.

3.2.1 Acyclic arbitration protocols

In asynchronous priority arbitration with busses, we restrict the arbitration process to be purely

combinational by requiring that the arbitration logic on all the modules together with the ar-

bitration busses form an acyclic circuit. Using combinational logic with asynchronous feedback

paths may introduce race conditions and metastable states, which can defer arbitration indef-



3.2. ASYNCHRONOUS PRIORITY ARBITRATION WITH BUSSES 61

initely (see [2, 62, 72]). The acyclic nature of the arbitration logic imposes a partial order on

the busses, corresponding to partitioning the busses according to their depth in the arbitration

circuitry. This partial order can be extended to a linear order, by having busses at a given

depth succeed busses of greater depth, and by arbitrarily ordering busses of the same depth.

With a linear order on the busses in mind, the acyclic nature of the arbitration circuitry can

be characterized as follows: logic values on higher indexed busses may be used to determine

logic values on lower indexed busses, but not vice versa. We formalize this idea in the following

definition of an acyclic arbitration protocol.

Definition 9 Let P be a set of arbitration priorities. An acyclic arbitration protocol of size m

for P is a sequence F = (fm-i,..., fl, fO) of m functions, fi : P x (0, 1 }m i-- {0, 1}, for

j=O, 1,...,m- 1.

In asynchronous priority arbitration with busses, every module has arbitration circuitry that

implements the same acyclic arbitration protocol, but with the module's unique arbitration

priority as a parameter. The m arbitration busses are linearly ordered from b,,-I down to b0.

in accordance with the acyclic nature of the circuit. Informally, function f, takes an arbitration

priority p E P and m - 1 - j bit values on the highest rm - 1 - j busses b,,,-i through bj+,,

and determines the bit value that a competing module c with arbitration priority p applies

to bus bi, for j = 0, 1,..., m - 1. Collectively, an acyclic arbitration protocol F of size m

can be interpreted as a function F : P x {0, 1 }m "- f0, 1}m, that determines the sequence of

m logic values that a competing module c with arbitration priority p applies to the m busses

when detecting a certain configuration of logic values on the m busses. (Notice that not every

function from {0, 1)'" to {0, 1}' constitutes an acyclic arbitration protocol of size m; it has to

satisfy the'requirements of Definition 9.)

An arbitration process among several contending modules consistf nf the modules indepen-

dently applying logic values to the m busses, according to an acycic ax oitration protocol F of

size m, until all the busses reach stable logic states. Since acyclic arbitration protocols have

no feedback paths, it is guaranteed that any arbitration process among contending modules

will terminate after a finite number of steps. To formally define and analyze arbitration pro-

cesses, however, we first need to discuss some means of measuring the time for asynchronous

arbitration mechanisms with busses.
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3.2.2 Bus-settling delay: a unit of time

Measuring the arbitration time of asynchronous mechanisms is somewhat problematic. We

follow a standard approach taken in many bus systems (see [16, 22, 23, 40, 42, 80, 81]) and

measure the arbitration time in units of bus-settling delay. The time unit of bus-settling delay,

typically denoted by Tb., is the time it takes for a bus to settle to a. stable logic value, once its

drivers have stabilized. This time includes the delays introduced by the logic gates driving the

bus, the bus propagation delay, and any additional time required to resolve transient effects.

In effect, we model an open-collector bus as an OR gate with delay Tb., the time it takes for

the output of the gate to stabilize on a valid logic value, once its inputs have reached their final

values. This approach models the situation in many bus systems rather accurately.

High speed busses are commonly modeled as analog transmission lines, where it takes finite

amount of time for signals to propagate through the bus and bring the bus to a stable logic

value. Since busses carry analog signals, the logic value on a bus casmot be used (and in fact

is undefined) before the bus reaches a stable digital value. In addition, the response time of

logic gates driving the busses and several transient effects need to be considered. In particular,

the effect of the wired-OR glitch on bus-settling time and the use of special integration logic at

module receivers to reduce this effect (see [5, 18, 42, 81]) indicate that the logic value on a bus

may not be used before a unit of time, bus-settling delay, passes.

Some authors carry out a more elaborate analysis of high speed busses, where they take

into account distances between modules on the bus and impose certain restrictions on the

ordering of modules. Taub [79, 80, 811, for example, assumes a geographical ordering of modules

by increasing priorities and equal distances between modules on a bus. Counterexamples to

Taub's analysis, where these requirements are not met, were found [3, 87]. In Chapter 4, we

introduce and use a digital transmission line model for a bus that takes into account distances

and signal propagation. In this chapter, however, our model for the settling of a digital bus

makes no restricting assumptions and is applicable to wide classes of systems, where priorities

and module locations are not fixed or predetermined.

Using our model of a wired-OR (open-collector) bus as a delay element that exhibits a delay

of Tbs, we can now model an arbitration process as a sequence of applications of an acyclic

arbitration protocol, where each such application completes in one Tim time.
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3.2.3 Arbitration processes

We next formally define the notion of an arbitration process of an acyclic arbitration protocol

on a set of competing arbitration priorities. We characterize the arbitration process by the

collection of the logic values on the m busses at the end of each computation stage. We use vill]

to denote the logic value on bus bj at the end of the lth computation stage, for j = 0, 1,. .. , m - 1

and 1 = 0,1, .... Without loss of generality, we assume that an arbitration process begins with

all busses being in logic value 0.

Definition 10 Let P be a set of arbitration priorities, F be an acyclic arbitration protocol of

size m for P, and Q C P be a set of competing arbitration priorities. The arbitration process

of F on Q is the successive evaluation of

Vj[O01 = 0,
Vi[I + 11 = V/ fj(p, Vm..1if1I, - V3 .1

PEQ

for j = 0, 1,..., m - 1 and l = 0, 1, .... We say that the arbitration process takes t stages if

t > 0 is the smallest integer for which v,[tJ = vi[t + 11, for j - 0, 1,..., m - 1. The resolution

of the arbitration process is the stable configuration of values (Vm-.[t), .... vd t), volt).

Definition 10 characterizes an arbitration process as a sequence of successive applications

of the acyclic arbitration protocol F to the set of competing arbitration priorities Q and the

configuration of the m busses. The arbitration process terminates when no more changes in

the state of the busses occur, at which point a resolution is reached. One can verify that any

arbitration process of an acyclic arbitration protocol F of size m takes at most m stages. This

is the case 4ecause at each computation stage of an arbitration process of an acyclic arbitration

protocol, at least one more bus stabilizes on its final value.

A better upper bound for the number of stages taken by arbitration processes can be given

by the depth of the acycic arbitration protocol. As discussed above, the acyclic nature of the

arbitration logic imposes a partial order on the busses. We can therefore statically partition

the m busses into d levels, such that the computation for a bus in a certain level uses only

the values of busses in previous levels. More formally, given an acyclic arbitration protocol F

of size m, we can simultaneously partition the m functions of F into d nonempty disjoint sets
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Fo, F1 ,..., F-I, and the m busses of B into d corresponding sets B0, B1 , - -, such that

fi E Fh if and only if b, E Bh, for0 _5 j :5 m- 1, and 0_< h 5 d-1. The partition must

have the property that the computation of a function fj E F1 depends only on the arbitration

priorities and on values of busses in sets B0 , Bl,..., Bh-1.. The depth of an acyclic arbitration

protocol F of size m is defined as the smallest d, for which a partition as above exists. The

depth of an acyclic arbitration protocol is never greater than its size, since placing each bus in

a separate level satisfies the requirements of the above partition and the number of levels in

this partition is the size of the protocol. The next theorem shows that any acyclic arbitration

protocol of depth d reaches a resolution after at most t = d computation stages.

Theorem 22 Let P be a set of arbitration priorities, F be an acyclic arbitration protocol of

size m for P, and d be the depth of F. Then, for any subset Q C P of competing arbitration

priorities, the arbitration process of F on Q takes at most d stages.

Proof. By induction on d, the depth of the acyclic arbitration protocol F.

Base case: d = 0. For depth d = 0, there are no arbitration busses and the claim holds

immediately for arbitrary Q.

Inductive case: d > 0. Given an acyclic arbitration protocol F = (fn-i,..., f, f0) of size

and depth d for P, we can partition F =,II-do1 Fh and B = Udl BA as discussed above.

Without loss of generality, we assume that the last level consists of the r functions and busses

with indices 0, 1,.... r - 1. The first d - 1 levels of F constitute an acyclic arbitration protocol

F' = Uh-2o Fh = (fn-i,..., f,+,, fh) of size m - r and depth d - 1 for P. By induction, the

arbitration process of F' on Q takes at most d - 1 stages. That is, for any r < j _5 m - 1 and

I > d - 1, we have v[l] = v,[d - 1]. In addition, according to the acyclic arbitration protocol

F, we also have that for any 0 < i < r - 1 and k > d > 0,

v[k] = V f,(p, v.-I[k - 1],...,v,[k - 1])
pEQ

V fV(p, vm -].[d , V'[d - 11)
PEQ

= vi[d],

because the dth level depends only on busses bm6, down to b, and because k - 1 > d - 1. This

proves that the arbitration process takes at most d stages. U
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Theorem 22 shows that the number of stages that an arbitration process takes is bounded

by the depth of the acyclic arbitration protocol F. This bound represents a standard static

approach in the analysis of delays in digital circuits, namely, that of counting the number

of gates on the longest path from the inputs to the outputs. In later sections of this chapter,

however, we introduce and use a novel dynamic approach of bounding the number of stages that

an arbitration process takes by a careful analysis of the data-dependent delays experienced in

the arbitration circuits. In doing so, we exhibit arbitration schemes that guarantee termination

of any arbitration process in a circuit of size and depth m after a fixed number of stages t, for

values of t in the range 0 < t < m.

3.2.4 Asynchronous priority arbitration schemes

To complete the definitior of asynchronous priority arbitration schemes, we need to introduce

the notion of an interpretation function. Suppose we have a set of arbitration priorities P and

an acyclic arbitration protocol F of size m for P. An interpretation function for P and F is a

function WIN {O, 1}' --. P, such that for any Q C P, with p E Q being the highest arbitration

priority in Q and (v,-,.-,..., vI, vo) being the resolution of the arbitration process of F on Q,

we have WIN(Vm-.I,...,Vt, Vo) = p. Informally, the function WIN interprets the resolution of

any arbitration process of F by identifying the highest competing arbitration priority. We are

now ready to define an asynchronous priority arbitration scheme for n modules, m busses, and

t stages.

Definition 11 An asynchronous priority arbitration scheme for n modules, m busses, and t

stages is a triplet A(n, m, t) = (P, F, WIN) , where

1. P is a set of n arbitration priorities;

2. F is an acyclic arbitration protocol of size m for P;

3. WIN is an interpretation function for P and F;

such that for any Q C P, the arbitration process of F on Q takes at most t stages.

Definition 11 emphasizes the role of the arbitration priorities, which are just a mechanism

to distinguish between different modules. It will become apparent, however, that careful design
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of the codewords used as arbitration priorities has a significant impact on the arbitration time.

In the next Section, for example, we demonstrate that by using the set of (Ig n + 1)-bit binomial

codes as arbitration priorities, we can achieve an arbitration time of t = 1 lg n.

3.3 Asynchronous priority arbitration schemes

In this section we first describe two commonly used asynchronous priority arbitration schemes:

linear arbitration, which with m = n busses arbitrates in time t = 1, and binary arbitration,

which with m = Ig n busses arbitrates in time t = Ig n. We then present our new asynchronous

scheme, binomial arbitration, which with m - lg n + 1 busses arbitrates in time t -- Ig n.

3.3.1 The linear arbitration scheme

This scheme uses m = n busses and arbitrates among n modules in t = 1 stages. To arbitrate,

contending module ci applies a 1 to bus bi, for 0 < i < n - 1, and does not interfere with other

busses. This translates to module ci having an n-bit arbitration priority pi, such that plj) = 1

if i = j and pj) = 0 otherwise. After t = 1 units of time, all the busses stabilize on their final

values, and the module with a 1 on the bus with the highest priority is recognized as the winner.

This scheme can also be implemented with tri-state busses, since at most one module writes to

any given bus. The scheme is also known as decoded arbitration and is used in a number of bus

systems and interrupt arbitration mechanisms (see [22, 24, 57, 82]).

Formally, we define this scheme as LINEAR(n, n, 1) = (P, F, WIN), where

1. P= {pi'=0--' 10' : for i=0,1,...,n- 1};

2. F = (f•l..fl, fo), where fi(p, v,,-l ... , vj+,) =p0j), for i = 0,1,..n- 1;

3. WIN(Ok 1 a) = 0 k 1 0 n-I--k = Pn,1-.-,, for 0 < k < n - 1 and any a E {0, 1 }n-1-k.

Notice that although the size of the acyclic arbitration protocol of LINEAR is m = n. its

depth is only d = 1, which according to Theorem 22 implies that the asynchronous linear

arbitration scheme takes at most t = 1 stages to arbitrate.



3.3. ASYNCHRONOUS PRIORITY ARBITRATION SCHEMES 67

3.3.2 The binary arbitration scheme

This scheme uses m = flg n] busses and arbitrates among n modules in t = flg nl stages. The

arbitration priority pi of module ci is the binary representation of i, for 0 < i < n - 1. To

arbitrate, contending module c drives its binary priority p onto the m busses, from p(m,-1) (the

most significant bit of p) onto bus bin..-, down to p(0) (the least significant bit of p) onto bus

bo; the result being the bitwise OR of the binary priorities of the competing modules. During

arbitration, each competing module c monitors the busses and disables its drivers according to

the following rule: let p(Q) be the /th bit of the binary priority p, and let vj be the binary value

observed on bus bj, for 0 < I < m - 1. Then if p(') = 0 and vi = 1, module c disables all its bits

p(W) for j < I. Disabled bits are re-enabled should the condition cease to hold. After t = [ig n]

units of time, all the busses stabilize on their final values, and the module whose arbitration

priority appears on the busses is the winner. This scheme was developed by Taub [79], and is

also known as encoded arbitration (see [16, 22, 40, 80, 81]).

Formally, we define this scheme BINARY(n, [g n] , ng ni) = (P, F, WIN) as follows. For

simplicity of notation we use m = [ig n].

1. P = {pj = E,-.'.•0 : where cm..-I -'c" o is the binary representation of i, for
i = 0,1,..n- 11;

2. F = (fm.-l,..., fl, fo), where

0 V,=,+, (p(l) = 0 A V = 1)
f£(pv~n-...,j~ I = p(W otherwise,

forj =0,1,...,m- 1;

3. WIN(a) = a, for any a E {0, 1}'.

Notice that the size m and the depth d of the acyclic arbitration protocol of BINARY are

equal, specifically m = d [- Rg n1. This can be verified by noticing that the computation

for each bus 6j, where 0 5 j _< m - 1, takes into account values on busses bl, for j < I <

m - 1. This implies, according to Theorem 22, that the asynchronous binary arbitration

scheme takes at most t = m = [lg n stages to arbitrate. On the other hand, it has been

shown in [22, 23, 80, 81, 881 that there are examples where a binary arbitration process takes
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exactly 11g ni stages. (Figure 3-1 presents such an example for n = 16 modules, m = [ig n] = 4

busses, and t = m = 4 stages.) These examples consist of arbitrating among bad subsets

of arbitration priorities, where at each stage the binary value of exactly one more bit of the

highest competing binary priority is resolved. The asynchronous binomial arbitration scheme,

presented next, guarantees fast arbitration by employing only certain codewords that exhibit

small data-dependent delays.

3.3.3 The binomial arbitration scheme

This scheme uses m = [g n + 11 busses to arbitrate among n modules in t = 12g n]

This scheme's acyclic arbitration protocol and interpretation function are identical to those of

the binary arbitration scheme, and thus the same hardware can be used. The only difference

is that binomial codes are used as arbitration priorities rather than all the 2' possible m-bit

codewords of binary arbitration. Alternatively, with m busses, this scheme can arbitrate among

2`*1 modules in t = [!(m - 1)] stages. We next describe the binomial codes and begin by

defining the interval-number of a binary codeword.

Definition 12 The interval-number of a binary codeword p is the number of intervals of con-

secutive l's or O's that it contains, disregarding leading O's.

Thus, for example, the interval-number of 001011 is 3, the interval-number of 0000 is 0, and

the interval-number of 10101010 is 8. In general, an m-bit binary codeword p with interval-

number r, has the form p = 0 m"f1 0 m210 3 I M3 ... ,n, where 6 E {0,11; m"o _ 0; mj > 0 for

1 < j <_ r; and '• = m. We next define the binomial codes of length m.

Definition 13 The set of binomial codes of length m, denoted by D(m), is the set of all the

m-bit binary codewords that have interval-number at most [1(M- 1)J.

The binomial codes of length rn are in fact all the m-bit codewords, that, after deleting

leading O's have at most [!(m - 1)] intervals of consecutive l's or O's. For example, the

binomial codes of length 4 is D(4) = {O000, 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1100,

1110, 1111}, consisting of 11 codewords that have interval-number at most 2. As another

example, the binomial codes that were used in the Section 3.1 (the example of Figure 3-2) are
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D(5) = {00000, 00001, 00010, 00011, 00100, 00110, 00111, 01000, 01100, 01110, 01111, 10000,

11000, 11100, 11110, 11111), consisting of the 16 codewords of length 5 with interval-number at

most 2. For general values of m, Corollary 24 in Section 3.4 shows that there are at least 2 m-1

binomial codes of length m. By taking m = lg n + 11, this translates to at least 245n+111-1 > n

binomial codes, which means that there are enough arbitration priorities for n modules.

Formally, we define this scheme BiNOMIAL(n, [1gn + 11, [1 gn]) - (P, F, WIN) as follows.

We use m = lg n + 11 and t = [½ ngn] for simplicity of notation.

1. P = D(m);

2. F = (fm-.,..., f,fo), where

= J if ~J~1 (pi) 0 A V1 =i)h (, n -... Vj+ 0 ifVl=j+l p(P = vt

, p(W) otherwise

for j = 0, 1,...,m- 1;

3. WIN(a) = a, for any a E {0, I}'.

It remains to show that the asynchronous binomial arbitration scheme indeed arbitrates

among n modules in at most t = 1[ Ig n stages. Notice that a standard static analysis of the

arbitration circuitry, as given for example in Theorem 22, does not give the desired result, since

both the size and the depth of the acyclic arbitration protocol F of binomial arbitration are m, -

d = [ig n + 11. In Section 3.4, we use a novel dynamic approach of analyzing the data-dependent

delays experienced in arbitration processes, and prove the correctness of the asynchronous

binomial arbitration scheme as a special case of the generalized binomial arbitration scheme.

3.4 Generalized Binomial Arbitration

In this section we extend the ideas of the asynchronous binomial arbitration scheme by pre-

senting the generalized binomial arbitration scheme that with m busses and in at most t stages

arbitrates among n = E=0 (7) modules. By Stirling's approximation, the asymptotic bus-time

tradeoff of generalized binomial arbitration is m - !tn /'. This bus-time tradeoff is of great

practical interest, enabling system designers to achieve a desirable balance between amount of
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hardware and speed. The performance of generalized binomial arbitration is based on analysis

of data-dependent delays.

3.4.1 Generalized binomial codes

We first extend Definition 13 by defining the set of generalized binomial codes of length m and

diversity r.

Definition 14 The set of generalized binomial codes of length m and diversity r, denoted by

G(m, r), is the set of all m-bit binary codewords that have interval-number at most r.

Generalized binomial codes serve as arbitration priorities for the generalized binomial ar-

bitration scheme. The next lemma determines the cardinality of the set of the generalized

binomial codes of length m and diversity r.

Lemma 23 The set G(m, r) contains E'=0 (7) distinct codewords.

Proof. To simplify the counting, we take all the codewords in G(m, r) and append a 0 at their

beginning. This results in a set of (m + 1)-bit words, that begin with a 0 and have at most

r switching points from a consecutive interval of O's to a consecutive interval of l's and vice

versa. The number of such words is E'=0 (7), since for any 0 < I < r there are exactly (7)

possibilities of choosing I switching points out of m possible positions. U

Corollary 24 There are at least 2 m-1 binomial codes of length m.

Proof. By our notation, the set D(m) of binomial codes of length m, is defined by D(m) -

G(m, [1(m - 1.)]). According to Lemma 23, we have

ID(m)I =
1=0 (M

This sum includes the first [1(m - 1)1 + 1 binomial coefficients, which constitute at least a half

of all the m + 1 binomial coefficients (7). Since the binomial coefficients are symmetric, that is,

(7I) = (,,M), the above partial sum is at least a half of the full sum, which is 2"'. We therefore

conclude that ID(m) I > .2'n - 2m-1.
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3.4.2 The generalized binomial arbitration scheme

This scheme uses m busses and arbitrates in at most t stages, for 0 < t < m. With the m and t

parameters determined, this scheme can arbitrate among at most n = F_=o (') modules. The

acyclic arbitration protocol and the interpretation function of this scheme are identical to those

of the binary arbitration scheme of Section 3.3.2, and thus the same hardware can be used. The

only difference is that generalized binomial codes from G(m, t) are used as arbitration priorities.

Formally, we define this scheme GENERLALIZED-BINOMIAL(n, m, t) = (P,F,wIN), where

n = E'=0 (7), as follows.

1. P = G(m,t);

2. F = (fm.--l,..., fl, fo), where

Vf0 f p(0 0 A vit= 1

S p(j) otherwise,

forj = 0,1,...,m- 1;

3. WIN(a) = a, for a E f0, 1}m .

The idea behind generalized binomial arbitration is that the interval-number of the highest

competing arbitration priority bounds the number of arbitration stages. In binary arbitration,

where all the 2 1n possible m-bit codewords are used, there are arbitration processes that can take

as many as m stages, where at each stage one more bit of the highest competing arbitration pri-

ority is resolved. For generalized binomial arbitration, however, we select codewords that have

at most t intervals of consecutive l's or O's. The following theorem uses data-dependent analysis

to argue tfiat any arbitration process takes at most r stages, where r is the interval-number

of the highest competing arbitration priority, by showing that at each stage the arbitration

process resolves at least one more interval of consecutive bits, rather than a single bit.

Theorem 25 Consider a generalized binomial arbitration process on m busses. Let Q be the

set of competing arbitration priorities, p be the highest arbitration priority in Q, and r be the

interval-number of p. Then after s stages, for any s > r, bus b, carries the logic value p(j), for

0<jm- 1.
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Proof. We prove the theorem by induction on r for arbitrary values of m. We use the notation

vj[k] to denote the logic value on bus bi at the end of stage k, for j = 0, 1,..., m - 1 and

k = 0, 1, ....

Base case: r = 0. The codeword p consists of m consecutive O's, that is, p(j) = 0 for

j = 0, 1,...,rm - I. Since p is the highest arbitration priority in Q, then any q E Q must also

have q(2) = 0 for j = 0, 1,..., m - 1. By our assumption that all the m busses are initially in

logic value 0, and since according to the acyclic arbitration protocol no module ever applies a

1 to any of these busses, the m busses remain in logic value 0 forever. In other words, after s

stages, for any s > r = 0, we have v3[9] = vj[0] = 0 = p()), for j = 0, 1,. . ., m - 1, which proves

the claim.

Inductive case: r > 0. The codeword p has m bits and interval-number r, and is thus of

the form p = 0101"•0"•1m 3 ...- 6r, where 6 E {0,1}; mo > 0; mj > 0 for 1 < j < r; and

.=0 mj = m. We first concentrate on the first r - 1. intervals of p, and define the set R of

reduced codewords of length rh = m - m, i E-o rnj, by ignoring the last m, bits of the

codewords of Q. One can verify that 0, the reduced version of p, is the highest codeword in

R, because we discarded the m, least significant bits of codewords in Q. Furthermore, the

interval-number of fi is r - 1, since the last interval of p of the form 6,?n was ignored. By

applying the claim inductively with in busses, the set of competing arbitration priorities R,

and the highest arbitration priority 0 of interval-number r - 1, we find that after r - 1 stages

the most significant in = m - mr busses stabilize to the bits of 0. That is, for any k > r - 1, we

have v2[k] = vj[r - 1] = 3t1) = p(j), for mn, < j < m - 1. We now consider the last M, busses,

bm, -I,.. . . bl, b0 . There are two cases to consider:

b = 1 The rth interval of p is an interval of M, consecutive l's, that is, p(') = 1 for i =

0, 1,...,i, - 1. After k stages, for any k > r - 1, the most significant m - m,. busses

carry the bits of p, and therefore there is no 1 in the range 0 < 1 < m - 1, with vl[k] = 1

and p(l) = 0. As a result, the module with arbitration priority p applies all its last rn,

consecutive l's. Therefore, for any js > r and i = 0, 1,..., rn,m - 1, we have v,[s] = v,,r] =

1 = p('), since the busses implement a wired-OR in one stage.

6 = 0 The rth interval of p is an interval of m, consecutive O's, that is, p(') = 0 for i =

0, 1, .. , m, - 1. Since p is the highest arbitration priority in Q, then for any arbitration
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priority q E Q, q 0 p, there must exist an I in the range m, < I < m - 1. with p(') = I

and q() -= 0. After k stages, for any k _> r - 1, the most significant m - mr. busses

carry the bits of p, and therefore any module with arbitration priority q # p disables

at least its last m,. bits. As a result, for any a > r and i = 0,1,..., m, - 1, we have

vi[s] = Vi[r] = 0 - p(i), because the busses implement a wired-OR in one stage and no

module applies a 1 to busses b0 through b,,_.-i anymore.

Thus, after a stages, for s > r, the m busses carry the corresponding bits of p. U

The following corollary shows that by taking G(m, t), the generalized binomial codes of

length m and diversity t, as arbitration priorities, we guarantee that any arbitration process

completes in at most t stages.

Corollary 26 Consider GENERALIZED-BINOMIAL( n, m, t), the generalized binomial arbitra-

tion scheme. For any subset of arbitration priorities Q C G(m, t), the corresponding arbitration

process takes at most t stages.

Proof. Let p be the highest arbitration priority in Q. Since the interval-number of p is at most

t, Theorem 25 guarantees that the arbitration process on Q, with p as the highest arbitration

priority, takes no more than t stages. U

3.4.3 Tradeoff of generalized binomial arbitration

The generalized binomial arbitration scheme achieves a bus-time tradeoff of the form n =

0= (7), which by Stirling's formula exhibits asymptotic behavior m • itn' . Figure 3-3

demonstrates this bus-time tradeoff for a system with n modules. The horizontal axis represents

m, the nunmber of arbitration busses used, which varies from m = Ig n to m, = n. The arbitration

time t, measured in units of bus-settling delay (arbitration stages), is marked on the vertical

axis. The arbitration time varies between t = 1 to t = Ig n stages. Generalized binomial

arbitration reduces to binary arbitration with m = Ig n busses, to binomial arbitration with

m = Ig n + 1 busses, and to a modified version of linear arbitration (see Section 3.5.2 for the

canonical form of linear arbitration) with m = n busses.

Figure 3-3 demonstrates that neither linear arbitration nor binary arbitration efficiently

utilize the resources. For example, increasing the number of busses used in binary arbitration by
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Figure 3-3: Bus-time tradeoff of the generalized binomial arbitration scheme for n modules, using
Ig n < m < n busses and 1 < t < Ig n stages.

one, results in speeding up the arbitration process by a factor of 2, as exhibited by our binomial

arbitration scheme. On the other hand, allowing another time unit over linear arbitration

enables reducing the number of busses from n to approximately V/7.

Notice, however, that in order to achieve another factor-of-2 improvement in the arbitration

time, adding another constant number of busses to the Ig n busses is not enough. Asymptot-

ically, as n grows without bound, we need to use more than (1 + c)lgn busses, for c > 0.232,

in order for the sum = (7), with t = 1 Ig n, to be at least n. This can be verified by

Stirling's formula, since when m is greater than ig n but smaller than 1.232 Ig n, and when
4 = I Ig n < m/4, the sum of the first m/4 binomial coefficients (7), for 0 < I < m/4, does

not exceed n. This demonstrates that our binomial arbitration scheme, which uses Ig n + 1

busses, exhibits a most economic balance, much more so than the binary arbitration scheme.

Other authors [23] have also discovered that by excluding certain codewords, the arbitration

time of binary arbitration can be reduced. Here, however, we give the first general scheme that

provides a full spectrum of bus-time tradeoff.
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3.5 Properties of asynchronous priority arbitration schemes

In this section we discuss properties and capabilities of general asynchronous priority arbitration

schemes with busses, which were defined in Section 3.2.4. We first describe several properties

and assumptions regarding asynchronous priority arbitration schemes with busses. We then

define a canonical form for acyclic arbitration protocols that is easier to analyze and reason

about than arbitrary acyclic arbitration protocols. Finally, we focus on the bus-time tradeoff

of general synchronous priority arbitration schemes and present some lower bound arguments

that demonstrate the efficiency of our schemes.

3.5.1 General properties and assumptions

Asynchronous priority arbitration schemes that employ busses arbitrate among contending

modules by having the modules read logic values from the busses and apply logic values to the

busses, according to an underlying acyclic arbitration protocol. For an asynchronous priority

arbitration scheme A = (P, F, WIN) that employs m busses, the acyclic arbitration protocol F is

a sequence of m functions, each responsible for applying a binary value to a separate bus, based

on the competing module's arbitration priority and on logic values on higher indexed busses.

The acyclic nature of the arbitration protocol F guarantees termination of any arbitration

process in at most t = m stages, as was formally discussed in Section 3.2.3. We are also

interested, however, is asynchronous priority arbitration schemes that arbitrate in t stages, for

any value of t in the range 0 < t < m.

The configurations of the m arbitration busses play a fundamental role in the analysis of

arbitration processes. A configuration of the m busses at any given time is simply the m-bit

vector of logic values on the busses. We denote a general configuration on the m busses by

v -= (V•m-l,.... v., vo), and for arbitration processes we use v[k] = (v,,n_.[k],.. ., v1 [k], vo[k]), for

k > 0, to denote the configuration of the m busses at stage k. We assume that any arbitration

process starts from a "clean" configuration of all O's, that is, vj[0] = 0 for j = 0, 1, .. ., m - 1.

An acyclic arbitration protocol F of size m can be thought of as a function that maps an

arbitration priority p and a configuration v to an m-bit vector u that a contending module c

with arbitration priority p applies to the m busses, when detecting the configuration v. When

convenient, we use the vector notation F(p, v) = u to describe this situation.
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For an asynchronous priority arbitration scheme, .A(n, m, t) = (P, F, WIN) , on n modules,

m busses, and t stages, any arbitration process on a subset Q C P takes at most t computation

stages. There may be, however, certain arbitration processes that take less than t stages, but it

is guaranteed that after t stages, the busses are always stable. Since A = (P, F, WIN) implements

priority arbitration and since there are n modules in the system, there must be at least n distinct

winning configurations, each being mapped by the interpretation function WIN to a unique

arbitration priority pi, which identifies module ci as the winner of an arbitration process. Some

modules may have more than one winning configuration, as is the case for example with the

linear arbitration scheme of Section 3.3.1, but each module must have at least one. Because the

number of intermediate and winning configurations in arbitration processes is hard to track,

it is difficult to analyze the behavior of arbitration processes. In Section 3.5.2, we show how

to translate arbitration protocols into a canonical form, which has the same arbitration power,

but is easier to analyze.

3.5.2 Canonical form for arbitration protocols

In an arbitration process of an asynchronous priority arbitration scheme with busses, the com-

peting module c with the highest arbitration priority p should direct the arbitration process

to a winning configuration v that identifies it, that is, WIN(v) = p. This should be the case

no matter which of the modules with arbitration priorities smaller than p participate in the

arbitration process. For competing module ci with arbitration priority pi, therefore, there may

be as many as 2' different arbitration processes that module ci should win, corresponding to

all possible subsets of the modules (c0 , cl , . . .,c,-.1 } participating in the arbitration process.

To simplify the analysis of arbitration processes, we introduce a canonical form of arbitration

protocols, which has the same arbitration power, but is easier to analyze.

Definition 15 Let P = {po,pl,...,..Pn-1} be a set of n distinct arbitration priorities and let

F = (fm-I,...,fi,fo) be an acyclic arbitration protocol of size m for P. We say that F is in

canonical form, if for any configuration v = (v-.... .. ,v1 ,Vo), for any j = 0, 1,. m - 1, for

any i = 0,1,...,n- 1, and for any 0 < k < i, we have

j(PiV.,_ .... ,vj+) = 0 = fA(Pk, Vm-1 , Vj+)=0.
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Definition 15, in effect, defines a canonical acyclic arbitration protocol as one that maps

any arbitration priority p and configuration v to an m-bit vector u that "shadows" any activity

of arbitration priorities of lesser priority that p. The definition guarantees that if a module

applies a 0 to a certain bus in response to some configuration v of the busses, then no module

with lesser priority applies a 1 to that bus in response to the same configuration v. In other

words, for any arbitration priorities p and q, with p being of higher priority than q, and for any

configuration v, the rn-bit vector F(p, v) is never component-wise smaller than the m-bit vector

F(q, v). In analyzing arbitration processes of canonical acyclic arbitration protocols, therefore,

it is sufficient to focus only on the behavior of the highest competing arbitration priority p.

since the protocol for p always "shadows" the behavior of smaller arbitration priorities. We

call an asynchronous priority arbitration scheme canonical if its acyclic arbitration protocol

is canonical. We typically denote that an arbitration scheme or an arbitration protocol are

canonical by putting a bar over them, as in A or P. Analyzing canonical asynchronous priority

arbitration schemes is an easier task. The next theorem demonstrates that analyzing canonical

asynchronous priority arbitration schemes is also general enough.

Theorem 27 Let A(n, m, t) = (P, F, WIN) be an asynchronous priority arbitration scheme

on n modules, m busses, and t stages. Then there is also a canonical asynchronous priority

arbitration scheme A(n, m, t) = (P, P, WIN) on n modules, m busses, and t stages.

Proof. To define the canonical asynchronous priority arbitration scheme A = (P, F, WIN), we

need only define the canonical acyclic arbitration protocol F; the arbitration priorities P and

the interpretation function WIN are identical to those of A. We define P - ( * *$i, ... I fIi o)

as follows: For any configuration v = (vm-,. - . , v1, vO), for any j = 0, 1, ... , m - 1, and for any

i = 0,1,...,n- 1, we define

(p, -,...,j+j)-- V fjpi, vn-l, .. ., Vj+) .
1=0

In fact, we define the rn-bit vector that module ci with arbitration priority pi applies to the m

busses under protocol P in response to a configuration v, to be the bitwise OR of the m-bit

vectors that modules co, c1,.. . ,i with corresponding arbitration priorities po, pl,... pi apply

to the m busses under protocol F in response to the same configuration v.
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To show that .( = (P, P, WIN) is a canonical asynchronous priority arbitration scheme on n

modules, m busses, and t stages, we first notice that P is a set of n distinct arbitration priorities,

as required. The arbitration protocol P = (I,-.1,. . ., it, f0) is acyclic, since by definition, each

function f,, for j = 0, 1,..., m - 1, takes an arbitration priority p E P and m - 1 - j bit values

(V'm-.,. . ., vi+1 ) and produces one bit, as required. Furthermore, F = (fm•-,.. .,f,fo) is in

canonical form, since for any configuration v = (V•-, ... VVto), for any j = 0,1,..., m- 1,

for any i = 0, 1,...,n - 1, and for any 0 < k < i, we have

fj (Pi, Vrn-I...,. IVj+i 0=
i

SV hMpi Vm-i,. . .,t'3j. = 0
1=0
k

= V fj (PI, VM-1,..., Vj+0) = 0
1=0

f (Pk, Vm-1 -... -,Vj+0) = 0,

as required by Definition 15. We then have that F is a canonical acyclic arbitration protocol

of size m for P.

We now argue that for any Q C P, the arbitration process of F on Q takes at most t

stages. Let pi E Q be the highest arbitration priority in Q. Because F is in canonical form,

the arbitration process of P on {pj} is indistinguishable from the arbitration process of F on

Q. (Under F, arbitration priority pi always "shadows" the activity of Q.) By our definition of

F, the arbitration process of P on {pj} is an exact simulation of the arbitration process of F

on {po, Pi,..., p,}, which by definition of A takes at most t stages. We then conclude that the

arbitration process of P on {p,} takes at most t stages, which also means that the arbitration

process of P on Q takes at most t stages.

Last, we verify that the function WIN is indeed an interpretation function for P and F. Let

Q C P be a set of competing arbitration priorities and let pi E Q be the highest arbitration

priority in Q. Let v be the resolution of the arbitration process of F on Q. As argued above,

v is also the resolution of the arbitration process of F on {pi), which is the resolution of the

arbitration process of F on {p0,pi,...,p,}. Since pi is also the highest arbitration priority in

{po,pj,...,pj}, and since WIN is an interpretation function for P and F, we have wIN(v) = pi,

which implies that WIN is also an interpretation function for P and P.
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This completes the proof that A = (P, P, WIN) is a canonical asynchronous priority arbi-

tration scheme on n modules, m busses, and t stages. N

Theorem 27 shows that canonical acyclic arbitration protocols have the same arbitration

power as other acyclic arbitration protocols. The proof transforms an acyclic arbitration pro-

tocol F into a canonical acyclic arbitration protocol F, by having module ci with arbitration

priority pi be paranoid and always assume that all the modules c0,cl,.. . ,c C-. with arbitra-

tion priorities p0,Pr,...,Pi-1 also participate in its arbitration processes. Under protocol F,

then, module cq responds to any configuration by simulating the combined responses of modules

Co, cI,..., ci to the same configuration under protocol F.

For example, transforming the asynchronous linear arbitration scheme of Section 3.3.1 to

c.anonical form, results in a scheme where to arbitrate, contending module ci applies a 1 to

busses bi,...,bo, and does not interfere with other busses. After t = 1 units of time, all the

busses stabilize on their final values, and the module with a 1 on the highest indexed bus is

recognized as the winner. Formally, this scheme is derived from LINEAR(n, n, 1) = (P, F, WIN),

and is defined as CANOC;cAL-LINEAR(n,n,1) = (P,P, wIN), where

1. P={p,=On-I-i 1 0i : for i=0,1,...,n-1};

2..F = fo), where for j = 0,1...,n- 1 and i = 0,1,...,n- 1, we have

fj (pi, V -I ... ,v+,) = 1 ifj < i and f3(pi, v,-i .... vj+,) = 0 ifj > i;

3. WIN(Ok 1 a) = Ok 1 0 n-'-k = Pn-l-k, for 0 < k < n - 1 and any a E {0, 1 }n-i-k.

We use the canonical forms of arbitration protocols for analysis purposes only. In practice,

there may be several drawbacks to using canonical forms of acyclic arbitration protocols, due

to their overly paranoid behavior. The advantage of canonical forms arises in investigating the

computational power of asynchronous priority arbitration schemes with busses. When analyzing

an asynchronous priority arbitration scheme for n modules, there may be a need to investigate

all possible 2n arbitration processes, corresponding to the 2n possible subsets of competing

modules. For a canonical asynchronous priority arbitration scheme on n modules, however,

there are exactly n different arbitration processes to analyze, and there are exactly n reach-

able winning configurations. This is the case since for canonical pro - -ols, higher arbitration

priorities always "shadow" the activity of smaller arbitration priorities.
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3.5.3 The bus-time tradeoff

Analytically, the simplest way to define the optimal bus-time tradeoff of asynchronous priority

arbitration schemes is to fix -n, the number of arbitration busses used, to fix t, the number

of arbitration stages allowed, and to investigate the largest number of modules that can be

arbitrated by some asynchronous priority arbitration scheme with m busses in at most t stages.

Formally, we define IZ(m, t), for m > 0 and t '> 0, as the smallest integer, such that any

A(n, m, t) = (P, F, WIN) , an asynchronous priority arbitration scheme for n modules, m busses,

and t stages, satisfies n _< R(m, t). Theorem 27 implies that in investigating R7(m, t), it suffices

to focus only on canonical asynchronous priority arbitration schemes with m busses and t stages.

We take advantage of this fact when convenient. The following lemma shows that the value of

IZ(m, t) is well defined for any m > 0 and t > 0.

Lemma 28 For any m > 0 and t > 0, we have IZ(m,t) < 2'.

Proof. Let A(n, m, t) = (P, P, WIN) be a canonical asynchronous priority arbitration scheme

on n modules, m busses, and t stages. With m busses there are no more than 2 ' possible

configurations of binary values on the busses, but there must be exactly n distinct resolutions

of arbitration processes of A. We must then have n < 2'. Since this bound holds for arbitrary

canonical asynchronous priority arbitration schemes, we also have 1(m, t) < 2m'. *

Lemma 28 states that no more than 2m modules can be arbitrated with m busses. Given

enough time, we can arbitrate among exactly n = 2 m modules, as the following lemma implies.

Lemma 29 For any m > 0 we have IZ(m, m) =2.

Proof. The asynchronous binary arbitration scheme of Section 3.3.2 arbitrates among n mod-

ules, using m = Ig n busses and t = m = Ig ni stages. Said another way, with m busses and in

t = m stages, exactly n = 2' modules can be arbitrated. Combining this with the result of

Lemma 28, we have JZ(m, m) = 2'. M

From Lemmas 28 and 29 it follows that there is no advantage in using more units of time

than the number of busses. We summarize this observation in the following theorem.

Theorem 30 For any t > rn> 0 we have IZ(m,t) = 2tm.
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The next theorem shows that 1Z(m, t) is monotonicly nondecreasing in both m and t.

Theorem 31 For any m > 0 and t > 0 we have

I. (m+ 1, t) Z(m t),

2 I(M, t + 1) >-M )

Proof. Increasing the number of arbitration busses or the number of arbitration stages cannot

decrease the number of modules that can arbitrate. We show this by describing how to simulate

any asynchronous priority arbitration scheme A(n, m, t) = (P, F, WIN) by a scheme with more

busses or time.

1. Define A'(n,m + 1,t) = (P', F',wIN') as follows. The arbitration priorities P' = P

are unchanged. If F = (fn-i,. ., fl, fo) then define F' = (f,, f'-j,.., fj, fo), where

f= = fj-, for j - 1,2,...,m, and fo(p,v) = 0 for any p E P' and v E {0, 1}m. Finally,

we define WIN'(V,,Vm.-.,. .. ,v 1 ,vo) = WIN(Vm,Vmn-.,...,Vi) for vj E {0,1} and j =

0, 1,..., m. Informally, the asynchronous priority arbitration scheme A' simulates A on

the first m busses and ignores the last bus. Since this simulation method works for

arbitrary asynchronous priority arbitration schemes, we then have 7Z(m + 1, t) >_ J(m, t).

2. Since A(n, m, t) = (P, F, WIN) arbitrates among any Q C P in at most t stages, it also

arbitrates in at most t + 1 st,.. , wvhich shows that I(m,t + 1) > IZ(m, t). U

We now turn to investigate 7R(m, t), for values of m > t > 0. The next lemma investigates

the case t = 0.

Lemma 32 For any m > 0 we have "R(m, 0) = 1.

Proof. With t = 0 stages and m busses to arbitrate, for any value of m > 0, the reading of

the busses after t = 0 stages consists of m zeros. It then follows that we can arbitrate among

at most one module, that is R(m, 0) = 1 for any m > 0. U

We next investigate R(m, t) for the case t = 1. The following theorem demonstrates that

any canonical asynchronous priority arbitration scheme with m busses can be in at most m + 1

different configurations after t = 1 stages.
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Theorem 33 Let A(n, m, t) = (P, P, WIN) be a canonical asynchronous priority arbitration

scheme on n modules, m busses, and t stages. Let U = { u : u = P(p, 0') for p E P} be the

set of all possible responses of modules of A to the initial configuration v = 0m. Then we have

IuI < m+ 1.

Proof. For convenience of analysis, we refine the definition of U. Corresponding

to P = {Po,Pi,. .. ,P -i, the set of responses U is a set of m-bit vectors U =

{ui : u F=P(pj,0, ) for i = 0,1,...,n- 1). Each m-bit vector ui E U, is the response ofpi

under P to the configuration v = 0'. Since F is a canonical acyclic arbitration protocol and

since the arbitration priorities are indexed in increasing order of priority, we must have that for

any 0 < k < i < n - 1, the m-bit vector ui has a 1 at component j if the m-bit vector uk has a

1 at component j, for j = 0, 1,..., m - 1. This implies, by the pigeonhole principle, that there

cannot be more than m + 1 such m-bit vectors in U, or that IUI <_ m + 1. n
Armed with Theorem 33, we can now show that 1?(m, 1) = m + 1.

Lemma 34 For any m > 0 we have IZ(m, 1) = m + 1.

Proof. From Theorem 33 it follows that any canonical asynchronous priority arbitration

scheme A(n, m, 1) = (P, F, WIN) on n modules, m busses, and t = 1 stages, can reach at most

m + 1 distinct resolutions. For any sucn canonical asynchronous priority arbitration scheme.

.A, there must be exactly n resolutions, which implies that n < m + 1. Since this bound holds

for arbitrary .A, we then also have R(m, 1) < rn + 1.

With t = 1, our generalized binomial arbitration scheme of Section 3.4.2 achieves n

_1=0 (7) = ('n) + (7) = 1 + m. We therefore conclude that I?(m, 1) = m + 1. n
We next generalize Theorem 33, by showing that any canonical asynchronous priority arbi-

tration scheme with m busses and t stages can be in at most (m1)S!.different configurations

after 0 5 s < t stages.

Theorem 35 Let .A(n, m, t) = (P, F, WIN) be a canonical asynchronous priority arbitration

scheme on n modules, m, busses, and t stages. Let U[01 = {0m} be the set of the initial

configuration of m bits of 0, and let U[s], for 1 <5 s < t, be the set of possible configurations of

A after s stages. Then, for any 0 < < t, we have lU[sa] _< (m.")s!.
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Proof. We prove the theorem by induction on s. For convenience of analysis, we first refine

the definition of U[s], for 0 < a < t.

Due to the canonical nature of the asynchronous priority arbitration scheme .A, there are

exactly n distinct arbitration processes to analyze, each corresponding to a different module

ci being the highest priority module arbitrating. We begin by defining the sequence of con-

figurations that module ci with arbitration priority pi generates if ci is the highest priority

module that arbitrates. For any 0 < i < n - 1, we define u,[0J = 0' and we inductively define

u,[s] = F(p,, uj[s - 1]), for values of s > 1. The canonical nature of the acyclic arbitration

protocol F guarantees that the m-bit vector u•[al is the configuration of the m busses after

a stages, when module ci is the highest priority module arbitrating, no matter which of the

modules co, cl , ... -I also arbitrates. The set U[s] of all possible configurations of A after s

stages, for any . > 0, can now be defined as

n-1

U[S] = U {uis]} •
i=O

This is the case because if module ci is the highest priority module arbitrating, then the con-

figuration of the m busses after s stages is uijs].

We now prove the theorem by induction on a. For the case . = 0, we have U[0] = {10'} and

IU[O]l = 1 = (7+')0o!. For s = 1, we have from Theorem 33 that jU[1]l < m + I = ( ..)V. We

now assume that for ,- 1 we have lU[s - 1]Q < ('+')(s - 1)!, and show that IU[s]I _< (m+1)S!.

The set of possible configurations of the m busses after a - 1 stages is U[s - 11. Each

configuration u E U[s - 1] defines an equivalence class, Cu = {ci : uj[s - 11 = u}, of all the

modules c; that bring the busses to configuration u after s - 1 stages. (Correspondingly, we

define P {pi : uj[a - 1] =- u}, for each u E U[s - 1].) This definition implies that for any

u E U[s - 1], the configuration of the m busses after a - 1 stages is u if and only if some module

ci E Cu is the highest priority module arbitrating. Furthermore, for each u E UfS - 1] (or for

each ci E Cu), the first a - 1 busses b,-,-., bm.-2,. . . , b.-,+l have stabilized on the first s - 1 bits

of u. The modules in C. have only the last m - a + 1 busses bm._.,bm,-,-... .,bo to which they

can apply new values at stage s. Focusing on the last m - a + 1 busses, an argument similar to

that of the proof of Theorem 33 shows that there are at most m - s + 2 different responses of

modules in Cu during stage a. Said formally, for any u E U[s - 1] we have
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U (Fp' U)) m m- a+2.
pep..

That is, any configuration u E U[s - 1] can develop to no more than m - s + 2 configurations

during stage s. By definition, we have

U[s] = U U {I(p,U)},
uEU[o-1] pEP.

which implies

IU[s]l 1 IU[s- 1]1. (m- s + 2)

= (re+l!) (1)s+2)

_(m+s 12)!
(m- + 2)!s (m - s + 2)

(m + 1)!
(m - s + 1)!
(m +

which completes the proof of the theorem. U
Theorem 35 demonstrates that any canonical asynchronous priority arbitration scheme with

m busses and t stages can be in no more than (',+1)s! different configurations after s stages,

for any 0 < s < t. The result of Theorem 35 implies the following theorem.

Theorem 36 For any m > t > 0, we have 1?(m,t) <_ (m+1)t!.

Proof. Let A(n, m, t) = (P, P, wIN) be a canonical asynchronous priority arbitration scheme

on n modules, m busses, and t stages. From Theorem 35 we have that the number of possible

configurations that .A can be in after t stages in at most (t+ 1)t!. We then have n < ('+')t!,

because A has exactly n resolutions. Since this discussion holds for arbitrary A, we conclude

that IR(m,t) < (m+l)t!. U
The preceding analysis provides several nontrivial bounds for the bus-time tradeoff of gen-

eral asynchronous priority arbitration schemes. These bounds were obtained by analyzing the

canonical forms of such schemes. We conjecture, however, that the bounds of Theorem 35 and

of Theorem 36 are not tight in general, and that the tight bound for the bus-time tradeoff is

TZ(m, t) = '=0 (7), exhibited by our generalized binomial arbitration scheme.
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3.6 Discussion and extensions

This section contains some discussion, additional results, and directions for further research on

priority arbitration with busses.

3.6.1 The k-ary arbitration scheme

The linear arbitration and binary arbitration schemes of Section 3.3 use n-ary and binary

representations, respectively, of module priorities. We can also use radix-k representation of

module priorities, for other values of k, to arbitrate among n = k0 modules in t units of

time, using m = tk busses. We sketch the asynchronous k-ary arbitration scheme here due

to its simplicity and because it generalizes the linear and binary arbitration schemes rather

straightforwardly. This scheme exhibits a bus-time tradeoff of the form m - tnl/t, which is a

factor of e worse than the asymptotic bus-time tradeoff exhibited by our generalized binomial

arbitration scheme of Section 3.4.2.

Asynchronous k-ary arbitration, for 2 < k < n, can be described as follows. Each module is

assigned a unique k-ary arbitration priority consisting of t radix-k digits. We divide the m = tk

busses into t disjoint groups, each consisting of k busses. During arbitration, competing module

c applies the t radix-k digits of its arbitration priority p to the t groups of busses, using linear

encoding of its digits on each group of k busses. As arbitration progresses, competing module

c monitors the t groups of busses and disables its drivers according to the following rule: let

pV) be the Ith radix-k digit of p and di be the highest index of a bus in the lth group of busses

that carries a 1. Then if p(l) < da, module c disables all its digits p(i) for j < 1. Disabled

digits are re-enabled should the condition cease to hold. Arbitration proceeds in t stages, each

of which consists of resolving the value of another radix-k digit of the highest competing k-ary

arbitration priority.

The asynchronous k-ary arbitration scheme combines the ideas of the asynchronous binary

protocol with linear encoding of arbitration priorities, to achieve an intermediate bus-time

tradeoff, m = tnMO The acyclic arbitration protocol of k-ary arbitration is of size m = tk, but

its depth is only d = t. The analysis of k-ary arbitration is a static one, similar to the analysis

of binary arbitration. Implementing the asynchronous k-ary arbitration scheme, however, may

require a different circuitry for arbitration in radix k. Our generalized binomial arbitration
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scheme, besides achieving a better bus-time tradeoff, is also immediately implementable on

any arbitration circuitry of binary arbitration, which is the most commonly used asynchronous

priority arbitration scheme with busses.

3.6.2 Bus-time tradeoff of asynchronous priority arbitration

In Section 3.5.3, we proved that any asynchronous priority arbitration scheme on n modules,

m busses, and t stages, satisfies n < ( M+t)t!. Our generalized binomial arbitration scheme of

Section 3.4.2 achieves a better bus-time tradeoff of the form n = E1=0 ('). There is still a

gap between the upper and the lower bounds on the bus-time tradeoff of asynchronous priority

arbitration schemes. We conjecture that the bus-time tradeoff exhibited by the generalized

binomial arbitration scheme is optimal for our model of asynchronous priority arbitration with

busses, but we were unable to prove or disprove it. Using the notation of Section 3.5.3, we

conjecture that I(m, t) = E' (7), for any m > 0 and t > 0.

3.6.3 Synchronous priority arbitration schemes

In this chapter we discussed the asynchronous model of priority arbitration with busses and

presented several asynchronous schemes. Considering synchronous priority arbitration scheme

that use clocked arbitration logic, one can show that a synchronous version of k-ary arbitration

achieves a bus-time tradeoff of the form m - n1/9. (Variants of this scheme are used in

synchronous communication protocols (see 145, 711). In synchronous priority arbitration, busses

can be reused on successive clock cycles, which enables a better bus-time tradeoff than that of

asynchronous priority arbitration, in that there is no multiplicative factor of t in the bus-time

tradeoff m = n

For synchronous priority arbitration schemes, a related arbitration model can be defined.

In this model it is possible to prove that the tradeoff m = 0(nl/') is optimal. The proof utilizes

the result of Lemma 34 that with m busses at most n = + + 1 modules can be arbitrated in

t = 1 stages. Using synchronous priority arbitratiqn in t stages, one cannot do any better than

arbitrating among at most n = (m + I)' modules, which implies the optimality of the tradeoff

m = E(nl/t) exhibited by the synchronous version of k-ary arbitration.
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3.6.4 Resource tradeoffs

Resource tradeoffs of the form m = e(tnl/t), based on multiway trees and the special class of

binomial trees, are discussed in (81 for a variety of problems such as parallel sorting algorithms,

searching algorithms, and VLSI layouts. Asynchronous priority arbitration with busses can in

fact be considered as a selection process on trees. Asynchronous k-ary arbitration corresponds

to a selection process on regular trees of branching factor k, while asynchronous generalized

binomial arbitration corresponds to a selection process on the more economical "modified bi-

nomial trees" of 18).

3.6.5 Directions for further research

In this chapter we investigated a model for the settling of a digital bus that assumes a unit

of time (bus-settling delay) for the bus to stabilize to a valid logic value. There are several

situations, such as electrical transmission line, radio channels, and optical fibers, however,

where a different analysis based on distances and directions may be required. In Chapter 4 we

examine the performance of priority arbitration schemes in a more elaborate model of a bus as

a digital transmission line.

The busses in the arbitration mechanisms investigated serve as a shared memory into which

modules write and from which they read. These busses/memory implement the OR function

of the values written to them. There might be some interest in other logic functions that

busses/memory can implement. One interesting case would be memory cells that can compute

the majority function on 0/1 values written into them.

Our work has concentrated on analyzing the data-dependent behavior of arbitration mecha-

nisms that ase fixed module priorities. There are several mechanisms that do not use determin-

istic module priorities or that arbitrate by using randomized protocols. It would be interesting

to extend our analysis to these more flexible or randomized schemes.

Finally, the domain of data-dependent analysis has not been heavily investigated. There are

many interesting circuits that exhibit faster performance than implied by the static measure

of their depth. A more systematic approach for data-dependent analysis would prove to be

a valuable tool for circuit designers. There has been some focus on the structure of delay-

insensitive codes (851, for example, but not on data-dependent performance of logic circuits.
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Chapter 4

Priority Arbitration on Digital

Transmission Busses

This chapter examines the performance of priority arbitration schemes presented in Chapter

3 under the digital transmission line bus model. This bus model accounts for the propaga-

tion time of signals along bus lines and assumes that the propagating signals are always valid

digital signals. A widely held misconception is that in the digital transmission line model the

arbitration time of the binary arbitration scheme is at most 4 units of bus-propagation delay.

We formally disprove this conjecture by demonstrating that the arbitration time of the binary

arbitration scheme is heavily dependent on the arrangement of the arbitrating modules in the

system. We provide a general scenario of module arrangement on m busses, for which binary

arbitration takes at least m/2 units of bus-propagation delay to stabilize. We also prove that

for general arrangements of modules on m busses, binary arbitration settles in at most m/2 + 2

units of bus-propagation delay, while binomial arbitration settles in at most m/4 + 2 units of

bus-propagation delay, thereby demonstrating the superiority of binomial arbitration for general

arrangements of modules under the digital transmission line model. For linear arrangements of

modules in increasing order of priorities and equal spacings between modules, we show that 3

units of bus-propagation delay are necessary for binary arbitration to settle, and we sketch an

argument that 3 units of bus-propagation delay are also asymptotically sufficient.

89
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4.1 Introduction

The nature of signal propagation through a communication medium has a significant impact

on the design of communication protocols for that medium. In any communication system,

the time required for a signal sent by a given module to reach another module depends on the

propagation speed of signals in the communication medium, the distance between the modules,

and the directionality of signal propagation. Although different communication media may

have different signal-propagation speeds, qualitatively they can be modeled in similar ways.

Communication protocols must account for signal propagation delays by allowing enough time

for information to disseminate through the system.

In this chapter we investigate the effects of signal propagation delays through bus lines

on the performance of priority arbitration schemes presented in Chapter 3. For high-speed

signals, a bus acts like an analog transmission line with associated impedance that affects the

propagation delays (see [5, 22, 40, 88]). A complete characterization of signal propagation on

analog transmission lines involves several transient effects such as reflections, superposition,

and attenuation of signals. Analyzing the performance of communication protocols in such

detailed analog models is a rather difficult task, however, and to make such analyses tractable

a digital transmission line model for a bus is commonly used. This model accounts for the

propagation delays of signals along a bus, assumes that the propagating signals are always

valid digital signals, and ignores reflections, superposition, and attenuation of signals. The

digital transmission line model is a model of an idealized digital bus, which ignores the delays

caused by the analog nature of signals on electrical busses and focuses on the delays that arise

from signal propagation along bus lines.

Several researchers studied the performance of the asynchronous binary arbitration scheme

of Section 3.3.2 in the digital transmission line bus model. Taub [79, 81] investigated the

maximal propagation delay of signals in the binary arbitration scheme, under the assumptions

that modules are linearly arranged in increasing order of priorities and that they are equally

spaced on the bus lines. Taub showed that in such situations 4 units of bus-propagation delay

are sufficient for the binary arbitration scheme to settle, no matter how many bus lines are

involved. However, Taub claimed that such an arrangement of system modules exhibits a worst-

case scenario and concluded that 4 units of bus-propagation delay are always sufficient for the
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binary arbitration scheme on any number of bus lines. Empirical counterexamples to Taub's

claim were found [3, 87], which consist of arranging system modules in certain arrangements

that require more than 4 units of bus-propagation delay for binary arbitration to settle. In (3],

for instance, Ashcroft, Rtivest, and Ward provide a specific example of arranging n = 4 modules

on m = 7 bus lines, such that 5 units of bus-propagation delay are required for the binary

arbitration scheme to stabilize. Other such empirical examples were found that contradict

Taub's hypothesis for general cases. In this chapter, we identify the flaw in Taub's hypothesis,

provide tight upper and lower bounds on the time (in units of bus-propagation delay) required

by binary arbitration for general arrangements of modules, and reexamine linear arrangements

of rr•odules in increasing order of priorities.

In the remainder of this chapter, we investigate the binary arbitration scheme in the digital

transmission line bus model. Section 4.2 discusses some issues of signal propagation on electrical

transmission lines and describes the digital transmission line model of a bus. In Section 4.3, we

formally disprove Taub's conjecture by providing a general scenario of module arrangement on

m busses, for which binary arbitration takes at least m/2 units of bus-propagation delay. We

also prove that for arbitrary arrangements of modules on m busses, binary arbitration settles

in at most m/2 + 2 units of bus-propagation delay, while binomial arbitration from Chapter 3

settles in at most m/4 + 2 units of bus-propagation delay, thereby demonstrating the superiority

of binomial arbitration for general module arrangements in the digital transmission line model.

Section 4.4 examines linear arrangements of modules in increasing order of priorities and equal

spacings between modules on the bus lines. In such arrangements, we show that 3 units of bus-

propagation delay are ncecessary for binary arbitration to settle, and we sketch an argument

that 3 units of bus-propagation delay are also asymptotically sufficient. Finally, in Section 4.5,

we discuss the results of this chapter and indicate directions for further research.

4.2 Busses as transmission lines

In this section we discuss the transmission line nature of electrical busses. We first describe

some of the analog issues of electrical bussed transmission lines, which affect the design of many

bus systems and protocols. We then present the digital transmission line model of a bus, which

serves as a low-level digital abstraction of a bus.
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4.2.1 Analog issues of bussed transmission lines

The electrical transmission of signals on a bus line is an analog phenomenon, although the

digital abstraction of logic design tries to hide the analog nature of signal transmission. The

nature of signal transmission on a bus line includes the propagation speed of signals, reflections

of signals, superposition of wave forms, voltage glitches and spikes, and signals attenuation,

among others. Here we briefly discuss some of these phenomena.

The propagation of signals on a bussed transmission line is a time-consuming rather than

an instantaneous event. The speed of signal propagation on a bus is determined by various

physical and geometrical properties, such as the material, shape, temperature, and electrical

properties of the bus in its environment. The length of a bus line determines the maximal

duration that a signal needs to propagate through the bus, which is termed bus-propagation

delay. However, there are other factors that affect the validity of digital signals that propagate

on a bus line, thereby affecting the propagation speed of digital signals on the bus.

A bus has a characteristic impedance that depends on its geometrical and physical proper-

ties. This characteristic impedance is computed in terms of the inductance, capacity, and length

of the bus (see [5, 40]). Impedance discontinuities along the bus, such as at connectors or at its

ends, cause reflections of a fraction of each wave form passing through them. Reflected signals

generate standing waves and noise on the bus line, which complicate the transfer of digital data.

Signal reflections and termination can be considerably reduced by careful engineering of the

bus and its connectors, but such fine tuning is rather complex and expensive.

A transmission line can simultaneously propagate numerous wave forms at different locations

and in either direction. Different wave forms pass through each other without interference to

create the spatel and temporal sum of the propagating wave forms. This phenomenon is known

as the superposition principle. Superposition of valid digital signals may cause non-valid digital

voltage levels at various places on a bus. The Pffrect of superposition of siknals is especially

problematic with open-collector bus drivers, where several signals, applied by different modules,

may be traveling on the bus in different directions. A discussion of wired-OR glitches, which

result from superposition of signals on open-collector busses, appears in [42].

The number of modules connected to a bus line and the distances between modules play

an important role in the propagation of signals on the bus. Electrical signals traveling on a
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bus line experience some attenuation, which depends on the distance traveled and the driver's

power. If several modules drive the bus to the same logic level, the bus may reach this level

faster than if only one module drives the bus. In addition, the length of the bus and the number

of modules on it determine the power at which modules should drive electrical signals onto the

bus to guarantee that the signals driven are at valid digital levels.

As a consequence of all the analog complications in driving digital signals onto bus lines,

most bus systems strive for engineering simplicity at the cost of reduced bus performance. In

Chapter 3 we discussed a bus model that assumes that the voltage level on a bus may not

be a valid digital value before a unit of bus-settling delay, Tb., passes. In this chapter we

introduce another bus model, the digital transmission line model, which attempts to capture

the transient nature of traveling digital signals on a bus line and ignores the analog phenomena

of signal reflections, waveform superposition, and voltage glitches and spikes. Very careful

design and engineering of a bus can reduce much of the analog phenomena on transmission

lines with the exception of the finite propagation speed of signals.

4.2.2 The digital transmission line bus model

The digital transmission line model accounts for propagation delays of digital signals along

bus lines, which depend on the distances and the directions that signals travel. This model

abstracts over the analog nature of reflected, superposed, and attenuated signals, by assuming

that the propagating signals are always valid digital signals. The digital transmission line model

is a model of an idealized bus, which enables examining certain inherent properties of bussed

systems (see for example [3, 23, 79, 80, 81, 87]). A careful design of high-speed bus lines can

result in a good approximation to this idealized model fqee [5, 17, 81]).

In the digital transmission line bus model, we make the following assumptions. The system

consists of n modules that are arranged along m parallel bus lines. The m bus lines all have

the same length L. Each of the n modules is connected to all the m bus lines at the same

spatial location, that is, at the same distance from the beginning of each bus line. Under these

assumptions, the distance between two modules on the bus lines is well defined; it is the distance

between the modules as measured on any of the m bus lines. There is a module at each of

the two ends of the bus lines, such that the distance between the two furthest away modules is
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exactly L and no other two modules are at distance L from each other.

Each module can drive digital signals on any of the m bus lines. All the m busses have the

same signal propagation speed, which we denote by V. Signals driven on a bus line propagate

at the same speed and in both directions on the bus. A signal that a module drives on any bus

line, therefore, can not be noticed at distance d away from that module before time t = d/V

passes. The time it takes for a signal to travel the whole length L of a bus line is Tp = LIV

and is termed the bus-propagation delay. For simplicity, we assume that the signal propagation

speed V is V = 1. This enables identifying a distance d on the bus lines and the time t that it

takes for a signal to travel this distances d, since t = dIV. With this assumption we also have

that Tp = L.

In the digital transmission line model, we assume that signals propagation on bus lines is

a digital phenomenon that exhibits no analog behavior. There are no reflections of signals or

of fractions of signals anywhere on the bus lines. The bus lines are terminated properly and

signals reaching either end of a bus line simply disappear. Digital signals that meet on a bus

line superpose in a logic OR manner according to the wired-OR nature of the bus medium, that

is, at any given point on a bus line the resultant level measured is always the logic OR of the

digital signals passing there. No signal spikes, glitches, or attenuation are experienced; signals

are always at valid digital levels. Signals on parallel bus lines do not interfere with each other,

that is, there is no "cross talk" between bus lines. Finally, we assume that modules do not

experience any gate delays in driving signals on bus lines; the only delays considered are the

propagation delays of digital signals along bus lines. In spite of its abstract characterization

of bus lines, the digital transmission line model is a useful tool for investigating the effects of

signal propagation delays on the performance of various protocols.

4.3 General arrangements of modules

In this section, we investigate the arbitration time of the binary arbitration scheme for general

arrangements of modules. A widely held misconception is that in the digital transmission

line model the arbitration time of binary arbitration is at most 4 units of bus-propagation

delay. Here, we formally disprove this conjecture by demonstrating that the arbitration time

of the binary arbitration scheme depends on the arrangement of the arbitrating modules in
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the system. We first provide a scenario of module arrangement on m busses, for which binary

arbitration takes at least m/2 units of bus-propagation delay to settle. We then prove that for

any arrangement of modules on m busses, binary arbitration stabilizes after at most 7n/2 + 2

units of bus-propagation delay. Finally, we relate these results to the binomial arbitration

scheme and demonstrate that it settles in at most m/4 + 2 units of bus-propagation delay.

4.3.1 Lower bound for binary arbitration

To prove the lower bound on the arbitration time of binary arbitration with m bus lines in the

digital transmission line model, we describe a scenario for arranging a selected set of arbitrating

modules on the m bus lines. We assume that all the arbitrating modules start their arbitration

process simultaneously and follow the binary arbitration protocol, which is described in Section

3.3.2. We remind that this protocol states that each module applies its arbitration priority to

the m bus lines, and that if a module applies a logic 0 to a certain bus line but detects that

the bus line carries a logic 1, then the module disables all its bits of lower significance for as

long as the conflict on that bus line remains. This rule guarantees that after sufficient delay

only the bits of the highest arbitration priority are applied to the m bus lines. Until this time

delay passes, however, there may be many modules applying and disabling low-order bits, which

may generate many transient digital signals on the bus lines. The system stabilizes when all

the transient signals on all the bus lines have disappeared. Our lower bound scenario arranges

selected modules on the m bus lines in such a way that there is a sequence of m/2 transient

signals, each of which is stimulated by its predecessor in the sequence, that travel from side to

side on the m bus lines. This has the effect of delaying system settlement until at least m/2

units of bus-propagation delay pass.

Our lower bound scenario partitions the selected arbitrating modules into two sets, which

we shall denote by A and B. The set A of modules is located at the very far right end of

the m bus lines and the set B of modules is located at the very far left end. The distances

between modules inside each set are very small compared to the distance between the two sets.

The distance between the two sets (between the leftmost module in the right set A and the

rightmost module in the left set B) is almost the whole length L of the bus system. This has

the effect that arbitration inside each of the two sets settles much faster than even the time
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required for a signal to propagate from one set to the other. (These distances and delays will

be discussed in more detail towards the end of this subsection.) Figure 4-1 illustrates this high

level partitioning of the selected arbitrating modules into sets A and B.

-Set B Set A
I

- l f Bus b rn-i _ _ _ _ _ _ _ _ _ _ _ _

Bus b,_______ ___2___

Bus b ,-,

Bus b.

d/2 Almost L d d d/4

Figure 4-1: High level partitioning of the selected arbitrating modules into sets A and B. With a
parameter d (to be determined later), the total length of set A is 9d/4, the total length of set B is d/2,
and the distance between the two sets is almost L, such that d <€ L.

Inside each of the sets A and B, modules are organized in linear order of priorities, with

priorities increasing from left to right in set A and from right to left in set B. Each set by itself

settles rather fast, due to its relatively short total length. However, the arbitration priorities

in the two sets are selected in such a way that they interact with each other. Initially, when

arbitration begins, a special "wave form" is generated by modules in set A on 2 top bus lines

and is propagated towards set B. This special "wave form" arrives at set B after the arbitration

in set B have already settled and causes some temporary confusion there. As a result, a similar,

reflected, and shrunk-by-2 "wave form" is generated by modules in set B on the next 2 bus lines

and is propagated back towards set A, where it causes a similar temporary confusion. This,

in turn, results in a similar, reflected, and again shrunk-by-2 "wave form", which is generated

by modules in set A and is now propagated back towards set B on the next 2 bus lines. This

ping-pong of "wave forms" lasts for m/2 iterations, since each such iteration utilizes 2 distinct

bus lines. Thf- duration of each such iteration is almost Tp, since this is the time required by

any "wave form" to propagate from set A to set B or vice versa. The arbitration process of the

whole system is therefore not completed before (m/2)Tp time passes.



4.3. GENERAL ARRANGEMENTS OF MODULES 97

We now describe the "ping-pong wave forms" that propagate back and forth between the

sets A and B. Each "ping-pong wave form" is the combination of two signals traveling together

in the same speed and direction on two consecutive bus lines. Odd-indexed "ping-pong wave

forms" are generated by modules in set A and propagate towards set B (from right to left),

while even-indexed "ping-pong wave forms" are generated by modules in set B and propagate

towards set A (from left to right). The first "ping-pong wave form" is spontaneously generated

by set A when arbitration begins. The ith "ping-pong wave form", for 1 < i < m/2, is generated

as a result of receiving the (i - 1)st "ping-pong wave form". In general, the ith "ping-pong

wave form", for 1 < i < m/2, can be described as follows:

9 a 1-signal of duration 2d/2' on bus line b,.-2., and

e a 0-signal of duration 4d/2' on bus line bm.- 2i-..

Figure 4-2 illustrates the ith "ping-pong wave form". The parameter d is the distance between

the modules generating the first "ping-pong wave form" and will be discussed later.

Bus b.. 21

FX~r Bus b,.2 i.1

2d 2d

2' 21

Figure 4-2: The ith "ping-pong wave form" on two consecutive bus lines. This wave form propagates
from right to left, that is, i is assumed to be odd. For even i, this wave form should be reflected.

We now turn to describe the relative arrangement of modules inside the sets A and B, which

is responsible for the "ping-pong wave forms" phenomenon. For simplicity. we focus first on the

structure of set B, which is somewhat simpler than that of set A. The location of modules in

set B and their relative distances from each other are of primary importance. The modules in

set B are responsible for receiving the odd-indexed "ping-pong wave forms" (first, third, etc.)

coming from the right, and for generating the even-indexed "ping-pong wave forms" (second,

fourth, etc.) that propagate to the right. To examine the generation of the second "ping-pong

wave form", for example, we need to describe the location and priorities of three modules in set
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B. These three modules with arbitration priorities Pl, p2, and P3 are illustrated in Figure 4-3.

Module p3 is at the left end of the bus system, module P2 is at distance d/4 from the left end

of the bus system, and module p, is at distance d/2 from the left end of the bus system. (The

parameter d, to be reminded, is related to the duration of the first "ping-pong wave form".)

Furthermore, module p, is the only arbitrating module (in both sets A and B) with a 1 on bus

bm,-4; no other arbitrating module has a 1-bit on this bus. The space between modules p1 and p

contains no other arbitrating modules. The space between modules pN and P3 may contain other

arbitrating modules for generation of future even-indexed "ping-pong wave forms". However,

each arbitrating module in the space between pN and p3 must agree with p2 and p3 on their

high order bits, as illustrated in Figure 4-3.

p3  P2  p1
:1 Fi_ 1 __l _Bus b •.

o 0 0 10 Bus b , 2

1 I 1 1 0 Bus b , 3Sa 0 00 Bus b,,

1' 1_ _ 10 Bus b ,.

* I I I I

0~1

d/4 d/4

Figure 4-3: The arrangement of the three modules in set B that are responsible for receiving the first
"ping-pong wave form" and for generating the second "ping-pong wave form". The space between P, and
p2 contains no other arbitrating modules. The space between p2 and p3 may contain other arbitrating
modules for generation of future even-indexed "ping-pong wave forms".

We next examine how the arrangement of the three set-B modules, illustrated in Figure

4-3, receives the first "ping-pong wave form" and generates the second "ping-pong wave form".

We assume that the first "ping-pong wave form", which propagates from right to left, arrives

at the location of module p, at time t. This first "ping-pong wave form" consists of 2 left-

traveling signals as follows: a 1-signal of duration d on bus line b,,-_2 accompanied by a 0-signal

of duration 2d on bus line bn-3 (see Figure 4-2). In the following discussion, we keep track of

right-traveling wave forms generated on bus lines b,-4 and bm,_.5, as detected at the location

of module Pl, starting at time t + d.
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We first concentrate on the wave form generated on bus line 6b-4 at the location of P,

after time t + d. Notice that the left-traveling 1-signal on bus line b,.-2 (one part of the first

"ping-pong wave form") arrives at module p, at time t, is of duration d, and thus it leaves

module P, at time t + d. At time t + d/2 the leading edge of this signal arrives at module

p3, and at time t + 5d/4 the trailing edge of this signal leaves module p2 (see Figure 4-3).

Therefore, in the time interval (t + d/2, t + 5d/4), all modules between p2 and P3 disable their

bits on the bus lines below b,.-2. Specifically, this causes a right-traveling 0-signal on bus line

bin.- 3 , originated at module p3, which arrives at module p1 at time t + d. This right-traveling

0-signal on bus line b,.-3 is terminated at time t + 5d/4 at the location of module p2, since the

signal on bus bin.- 2 passes p2 at that time. However, at the location of pl, the right-traveling

0-signal on bus b,,,- 3 is detected until time t + 5d/4 + d/4 = t + 3d/2 (it takes time d/4 for the

change at p2 to reach ph). In addition, the left-traveling 0-signal on bus line b,.- 3 (the other

part of the first "ping-pong wave form") guarantees that no 1-signal arrives on this bus from

the right until time t + 2d. The result of all the above discussion is that between time t + d

and time t + 3d/2 the digital values on bus lines b,.-, through b,.- 3 at the location of P, agree

with the bits of priority Pl. Consequently, module ph generates a 1-signal on bus line b,.- 4 in

the time interval (t + d, t + 3d/2), which propagates both left and right and is of duration d/2.

The right-traveling portion of this signal is one part of the second "ping-pong wave form".

We now concentrate on the wave form generated on bus line bm.-.5 at the location of P, after

time t + d. The discussion in the previous paragraph about the right-traveling 0-signal on bus

line b,,-_3 is also applicable to bus line b,,-. 5, since the modules between P2 and P3 disable all

their bits below bus b,•.-2. Therefore, there is a right-traveling 0-signal on bus b,_5 between

time t + d end time t + 3d/2. However, the 1-signal on bus b,,,- 4, generated by module pi

between time t + d and t + 3d/2, propagates both to the left and to the right. The left-traveling

portion of this 1-signal on bus b,,,-4 arrives at modules to the left of P, just as the left-traveling

1-signal on bus b,,._2 leaves those modules. Consequently, modules to the left of p, continue

to disable their bits on bus b,_5 for at least another d/2 time, which is the duration of the

1-signal that module P, generates. As a result, we have a right-traveling 0-signal on bus line

b,,-. 5 in the time interval (t + d, t + 2d), which is the other part of the second "ping-pong wave

form". The right-traveling signals on bus lines b,,.-4 and b,,.-s leave set B at time t + d on their
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way towards set A, where a similar, reflected, and shrunk-by-2 process occurs.

The structure of set A is almost identical to that of set B. The only difference is that the

first "ping-pong wave form" is spontaneously created by modules in set A when the arbitration

process begins. Figure 4-4 illustrates the five set-A modules that are responsible for the first

and the third "ping-pong wave forms". Modules p4, ps, and ps spontaneously create the first
"ping-pong wave form" on bus lines bm_2 and bm.-3. To see that, we concentrate on the left-

propagating wave forms detected at the location of module p4 immediately after arbitration

starts. When arbitration begins, module P4 generates a 1-signal on bus line b,,.-2 for a duration

of d, since after time d the 1-signal that module ps generates on bus line b,_- disables module

p4 forever. Also, when arbitration begins, bus line bm,-3 at the location of p4 carries a 0-signal

for a duration of 2d, until the 1-signal from module p6 arrives from the right to the location of

module PN. The combination of the signals on bus lines b,,i-2 and bin- 3 is the first "ping-pong

wave form" that propagates towards set B. Modules P6, p7, and ps are responsible for the third

"ping-pong wave form" on bus lines bm..-6 and bm..-7. The arrangement of these modules is a

shrunk-by-2 mirror image of the arrangement of set B.

P4  Ps Pe P7 P6

Bus b .01

Bus b rM 0 0 0o 0 o
SBus b• 5 10 0 1 111

II

Bus b 6  0 1_________ 0 10__________

Bus b,, 7  01_ _ _ _ _ _ _ _ _ _ 0 0__ _t.____ __ __

II
t t

d d d/4

Figure 4-4: The arrangement of the five modules in set A that are responsible for creating the first
"ping-pong wave form", and for receiving the second "ping-pong wave form" and generating the third
"ping-pong wave form". The spaces between P4 and P5, between p5 and P6, and between p5 and p-
contain no other arbitrating modules. The space between p7 and ps may contain other arbitrating

modules for generation of future odd-indexed "ping-pong wave forms".
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The scenario for module priorities and placement continues in a recursive fashion. For

example, the region in set B, which is responsible for the fourth "ping-pong wave form", is a

shrunk-by-4 image of the modules in Figure 4-3. The three new modules are placed in total

space of d/8 from the left end of the bus lines, with the leftmost module of the three coinciding

with the module already there. The leftmost module on the bus lines, thus, has the following

string (10),/2 as its arbitration priority. Formally, for the generation of the (2k)th "ping-pong

wave form", we place a module with priority ( 1 0 )2k-1 10 10 '-4k-1 at distance d/2 2 k from the

left end, and another module with priority (I0)2k-1010m-4k at distance 2d/22k from the left

end. Similar recursion is applied to the structure of the right set A.

We now discuss the design parameters d, L, Tp, and the duration of the arbitration process.

The parameter d is the spacing between the modules that generate the first "ping-pong wave

form", and the parameter L is the length of a bus line. The total length occupied by the two

sets A and B combined is no more than 3d, which leaves a distance of at least L - 3d between

the two sets for "ping-pong wave forms" to travel back and forth. The arbitration scenario,

thus, consists of m/2 iterations, each of which takes at least (L- 3d)/L units of bus-propagation

delay. To maximize the arbitration time, we need to minimize the value of d. If the system

design is such that there is no lower limit on the distance between modules, then d could be

made as small as desirable and the arbitration process would take m/2 units of Tp. If, however,

modules are required to be equally spaced on the bus lines, then the following analysis shows

that the lower bound of m/2 units of Tp is asymptotically attainable.

Suppose that A is the spacing between any two consecutive modules on the bus lines. To

enable m/2 iterations of the lower bound scenario, the duration of the last "ping-pong wave

form" must be at least A. Alternatively, we must have A = 2-(m)/2 -)d, or d = 2/-A.

However, on m bus lines there are 2 " modules, which implies L = (21 - 1)A. The ratio

(L - 3d)/L is then at least 1 - 1/(2m/2-2), which approaches 1 as m increases. This indicates

that asymptotically almost the full length of the bus lines is traveled in each iteration. We

summarize this discussion in the following theorem.

Theorem 37 There is a scenario of module arrangement on m bus lines, such that under the

digital transmission line bus model, the binary arbitration scheme asymptotically requires at

least m/2 units of bus-propagation delay to settle.
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4.3.2 Upper bound for binary arbitration

In this subsection, we prove that for any arbitrary arrangement of modules on m busses, binary

arbitration stabilizes after at most m/2 + 2 units of bus-propagation delay. This upper bound

is derived by concentrating on the number of 0-intervals in the highest competing arbitration

priority and on the relative locations of arbitrating modules. We first define the number of

0-intervals of a codeword.

Definition 16 The number of 0-intervals of a binary codeword p is the number of intervals of

consecutive O's that p contains, disregarding the leading O's.

The nature of the binary arbitration protocol is such that an interval of consecutive same

bits of a codeword can be regarded as a basic unit. For an interval of consecutive l's this is

the case, since such interval cannot be interrupted in the middle (there is no 0-bit there where

1-signals can penetrate). An interval of consecutive l's it thus either applied as one unit or

entirely disabled. An interval of consecutive O's can be interrupted in the middle, but then it

has the effect of disabling all the bits below that interval, no matter where inside the interval

the interruption occurs. In a binary arbitration process, the number r of 0-intervals of the

highest competing priority is related to the arbitration time, as the next theorem implies. The

theorem also relates the arbitration time to L, the length of the bus lines. This connection is

rather important, as the proof relies on the fact that arbitration among modules that are close

on the bus lines terminates faster than among far away modules.

Theorem 38 Consider a binary arbitration process on m bus lines of length L under the digital

transmission line bus model. Let Q be the set of arbitrating priorities, p be the highest priority

in Q, and r be.the number of 0-intervals of p. Then the arbitration process settles after at most

(r+2)L time, that is, there are no more transient signals on any bus line after time t = (r+2)L.

Proof. Since the number of 0-intervals of the highest competing arbitration priority p is r,

then p is of the form p - 0 l 1110 kl 2 &0k2 ... 1 110k,1 l',+, where ko > 0; l,ki > 0 for 1 < j _< r;

4+1 > 0; and ko + 4+- + ":=o(li + ki) = m. In the following discussion, we ignore the k0

leading O's since the first ko bus lines carry O's throughout the arbitration process. For notation

simplicity, we then assume that ko = 0. We now prove the theorem by induction on r for

arbitrary values of L.
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Base case: r = 0. The codeword p consists of m consecutive l's, that is, p = 1m. This interval

of m consecutive l's propagates together on the m bus lines, and after at most one unit of

bus-propagation delay all bs lines have settled forever. Arbitration in this case takes no more

than L time, which does not exceed (r + 2)L time.

Base case: r = 1. The codeword p has the form p = 1 110 k, 112. The first interval of 11

consecutive 1's propagates together on the first 11 bus lines, and after at most one unit of

bus-propagation delay all these 11 bus lines settle to l's forever. As a result, any module that

has some 1-bits in the second interval of k, bus lines, disables these bits after at most one

unit of bus-propagation delay. Therefore, after at most two units of bus-propagation delay, the

second interval of k, bus lines settles to O's forever. Consequently, after at most two units of

bus-propagation delay, module p re-enables its last interval of 12 consecutive 1's forever, which

brings the bus lines to stable state after at most three units of bus-propagation delay. (See

Section 4.4.1 for a proof that this scenario is indeed possible.) Arbitration in this case takes no

more than 3L time, which does not exceed (r + 2)L time.

Inductive case: r > 1. The codeword p has the form p =- 1 1 0 k, 1 12 0 k2 ... I11'+. We define the

set Q of all arbitrating modules in Q that have their first 11 + k, bits identical to those of p,

that is, Q - {q E Q : q = 1 11ik 0 .. Y. We focus on possible 1-signals sent by other arbitrating

modules (from Q - Q) in the second interval of p, that is, the interval of k, consecutive O's.

There are three cases to consider:

(a) There are no arbitrating modules with 1-bits in the second interval of p. In this case the

first three intervals of p, which have the form 1110 1112, behave like one uninterrupted

interval that could be replaced by an interval of 11 + k, + 12 consecutive 1's with no change

in tfie behavior. The number of 0-intervals remained to be considered is now r - 1. By

induction, such arbitration processes take at most ((r - 1) + 2)L < (r + 2)L.

(b) There is an arbitrating module q E Q - Q with a 1-bit in the second interval of p, and

there is another arbitrating module p' E Q, such that q is physically between p and p' on

the bus lines (see Figure 4-5). Let d, be the distance of q from p and let d2 be the distance

of q from p'. Without loss of generality, we assume that d, < d2. (This also implies that

d, < L/2, since otherwise d, + d2 > L). Then the 1-signal that module q generates in the

0-interval of p has duration d, (it is disabled by module p after time d1 ). This 1-signal
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completely disappears from the system after at most one unit of bus-propagation delay,

since both its right-traveling and left-traveling portions go over the corresponding ends of

the bus lines after at most time L. Consequently, not only is module q disabled after one

unit of bus-propagation delay, but also the effects that it caused in the system are gone

and the modules of Q are re-enabled after that time. By induction now, the modules of

Q complete the arbitration after at most ((r - 1) + 2)L time, which with the extra unit

of time L for disabling modules like q give an arbitration time of at most (r + 2)L.

P q p

01 1 10

01 1 0

d, d,

Figure 4-5: An interrupting module q on the first 0-interval of the highest arbitration priority p. There
is another module p' with the same first two intervals as p on the other side of q.

(c) There is an arbitrating module q E Q - 0 with 1-bits in the second interval of p, and

all the modules in Q are on the same side of q (see Figure 4-6). Let p' be the module

in Q that is closest to q and let d be the distance between p' and q. The 1-signal that

module q generates in the 0-interval of p has duration d, since it is disabled by module

p' after time d. However, this 1-signal may take another time L to completely disappear

from the system, since it may be the case that module q is at the very end of the bus

lines. Therefore, after at most d + L time the effects that modules like q cause are gone

and the modules of Q are re-enabled after that time. Notice, however, that the modules

of Q have cleared the first 0-interval of p, so that there are r - 1 more 0-intervals of p

to consider. In addition, notice that the the modules of Q are located in a bus-region of

length at most L - d. By induction now, the modules of Q, on the reduced region of the

bus lines, complete the arbitration after at most ((r - 1) + 2)(L - d) = rL - rd + L - d

time. To this time we need to add the extra d + L time required to eliminate modules

like q. Finally, we add another d units of time to allow the final signals of p to propagate
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beyond the region of length L - d and to cover the full length of the bus lines. The total

time is, therefore, (rL - rd+ L - d) +(d+ L)+d = rL - rd+2L = (r+2)L - rd <_ (r +2)L,

as required.
p p' q

0_ 1 0__ _ _ _ _ _ 1 _ _ _ _ _ 0 _

01o _ _ 0 _ _ _ __ 1

<L-d

Figure 4-6: An interrupting module q on the first 0-interval of the highest arbitration priority p. All
the arbitrating modules with the same first two intervals as p are on the same side of q.

We conclude that any binary arbitration process on bus lines of length L, with p, the highest

competing arbitration priority, having r 0-intervals, completes after (r + 2)L time. U

Theorem 38 bounds the arbitration time of any binary arbitration process by (r+2)L, where

r is the number of 0-intervals in the highest arbitrating priority and L is the length of the bus

lines. With m bus lines to arbitrate, the number of 0-intervals of any arbitration priority is no

more than m/2. In addition, we assume that L = Tp, where Tp is the bus-propagation delay.

These observations imply the following corollary.

Corollary 39 For any binary arbitration process on m bus lines under the digital transmission

line bus model, arbitration settles in at most m/2 + 2 units of bus-propagation delay.

4.3.3 Lower and upper bounds for binomial arbitration

Binomial arbitration uses the same arbitration protocol as binary arbitration. The results of

the preceding subsections, which provided lower and upper bounds on the arbitration time of

binary arbitration, are, therefore, directly applicable to binomial arbitration as well.

A lower bound scenario, similar to that of Theorem 37, can be applied to the binomial

arbitration scheme. The only difference is that the binomial arbitration priorities have no
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more than m/4 0-intervals, where "ping-pong wave forms" can penetrate and cause temporary

confusion. This implies the following corollary.

Corollary 40 There is a scenario of module arrangement on m bus lines, such that under the

digital transmission line bus model, the binomial arbitration scheme asymptotically requires at

least m/4 units of bus-propagation delay to scttle.

The upper bound for binomial arbitration is derivable from Theorem 38. Since for binomial

arbitration on m bus lines any arbitration priority has at most m/2 intervals, the number of

0-intervals in any priority is no more than m/4. This implies the following corollary.

Corollary 41 For any binomial arbitration process on m bus lines under the digital transmis-

sion line bus model, arbitration settles in at most m/4 + 2 units of bus-propagation delay.

4.4 Linear arrangements of modules

In this section we examine linear arrangements of modules in increasing order of priorities with

the modules equally spaced on the bus lines. For such arrangements, we show that 3 units of

bus-propagation delay are necessary for binary arbitration to settle. We also sketch an argument

that indicates that 3 units of bus-propagation delay, rather than the 4 claimed in [79, 81], are

asymptotically sufficient for binary arbitration.

4.4.1 Lower bound for binary arbitration

To demonstrate a lower bound of 3 units of bus-propagation delay on the arbitration time of

binary arbitration, we present an arrangement of two modules as in Figure 4-7. The arbitration

priority p of the module on the left side is 1m-201 and the arbitration priority q of the module

on the right side is 0 ,-2 1 0 . We use d to denote the distance between modules p and q. When

arbitration begins module q sends its 1-bit towards module p during the time interval (0,d),

since after time d the high order bits of p disable the 1-bit of q. At the location of p, the

1-signal on bus b, is detected during the time interval (d,2d), which causes p to disable its

last bit of 1 during that time interval. Only after time 2d, module p re-enables its last bit of

1, but it takes slightly more than time d for this change to propagate throughout the system.
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The arbitration time, therefore, is at least 3d. The reader may verify that if A is the distance

between consecutive modules on the bus lines, then the distance between modules p and q in

Figure 4-7 is d = (21 - 5)A. The total length of the bus lines is L = (21 - 1)A, and thus the

ratio d/L asymptotically approaches 1. This shows that the arbitration time of 3d approaches

3 units if bus-propagation delay asymptotically, as m increases.

p q

dt 01
lI I I

I I II

I-

Figure 4-7: Linear arrangement of 2 modules very close to the two ends of the bus lines. The arbitration
process on this arrangement asymptotically takes 3 units of bus-propagation delay.

4.4.2 Upper bound for binary arbitration

We now sketch an argument that indicates that the arbitration time of binary arbitration can

be shown to be close to 3 units of bus-propagation delay. The argument involves inspection of

several cases and only a high-level description of it is presented here. With m bus lines there

are 2' modules and the total length of the bus system is L. We partition the modules into

2 k subregions, each of length L/2k, according to the first k bits of their arbitration priorities.

By inspecting each of the 2 k subregions, one can verify that if the highest priority is in a

given subregion, then after at most 2 units of bus-propagation delay all the possible transient

signals sent by modules in lower-priority subregions have disappeared. This leaves only the

subregion under inspection, whose length is L/2k, for the rest of the arbitration, which we shall

analyze recursively. In addition, after the arbitration is completed on the inspected subregion

of length L/2k, at most another 1 - 1/2k units of bus-propagation delay are required for the

bit-signals of the highest priority to spread throughout the bus lines. If we let T(n) denote the

maximal time required by binary arbitration on n modules, then we get the following recurrence:
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T(n) = 2 + T(n/2k) + (1 - 1/ 2 k), which solves to give T(n) = 3 + 2/(2 k - 1). Now, as k increases

(there are more cases to inspect), the maximal arbitration time can be shown to asymptotically

approach 3 units of bus-propagation delay.

4.5 Discussion and extensions

In this section, we discuss the results of this chapter and indicate directions for further research.

4.5.1 Discussion

In this chapter, we investigated how the finite propagation speed of signals on bussed transmis-

sion lines affects the performance of the priority arbitration schemes of Chapter 3. We formally

disproved Taub's conjecture by providing a general scenario of module arrangement on m busses,

for which binary arbitration takes at least m/2 units of bus-propagation delay. We also proved

that for any arrangement of modules on m busses, binary arbitration settles in at most m/2 + 2

units of bus-propagation delay, while binomial arbitration settles in at most m/4 + 2 units of

bus-propagation delay. This demonstrates the superiority of binomial arbitration for general

arrangements of modules under the digital transmission line model. For linear arrangements of

modules in increasing order of priorities and equal spacings between modules, we showed that

3 units of bus-propagation delay are necessary for binary arbitration to settle, and we indicated

that 3 units of bus-propagation delay are also asymptotically sufficient. System designers and

engineers may wish to reconsider the use of Taub's assumptions and analyses, since different

arrangements of system modules exhibit substantially different behavior.

4.5.2 Further research

Several directions for extending the results of this chapter are listed.

* Average-case arbitration time of binary arbitration for arbitrary and linear arrangements.

* Linear arrangements of modules with arbitrary spacings between modules.

* The performance of binomial arbitration for linear arrangements of modules.

* Models of bussed transmission lines that characterize other aspects of the media.



Chapter 5

Coniclusion

Bussed interconnections are extensively used in many digital systems. Investigating the charac-

teristics, capabilities, and organization of bussed systems are the subject of ongoing research. In

this thesis, we focused on two application domains for busses: communication architectures and

control mechanisms, and examined the capabilities of busses as interconnection media, compu-

tation devices, and transmission channels. This chapter presents some concluding remarks and

motivals further research on bussed interconnections, in general, and on each of the aspects of

bussed systems that this thesis explored, in particular.

5.1 Bussed interconnections

Busses are shared communication media. A single bus can only implement one communication

transaction at any given time and thus constitutes a scarce resource that must be utilized intel-

ligently. Much research is directed at investigating techniques and mechanisms that can enrich

the bandwidth of a bus. Several techniques, such as time multiplexing, frequency multiplexing,

spatial multiplexing, and angular multiplexing have been suggested for some communication

media, such as radio channels and optical communications (see [12, 13, 78]). Some of these

techniques have also been applied to electrical busses, but a more thorough exploration of bus

multiplexing techniques is required.

Busses enable communication among several system modules, in contrast with point-to-point

wires that establish communication only between pairs of modules. This property of busses

109
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may or may not be desirable, depending on the application. On busses, any communication

transaction, whether a one-to-one or a broadcast, can be detected by all system modules, while

point-to-point wires feature privacy of communication. Busses require sophisticated controlling

mechanisms and protocols to enable sharing and to support sequencing of transactions, while

controlling the communication with point-to-point wires is somewhat more straightforward.

Busses, however, offer simple, standard, and scalable communication channels, which are the

desired features of many digital systems.

Bus technology is more complicated than the technology of direct communication channels.

Signal propagation on busses is a complex phenomenon that is ignored or poorly dealt with in

many systems. Bus driving technologies use special drivers for transmitting signals along busses.

Most digital systems employ the digital abstraction and ignore the analog nature of busses. But

even with the digital abstraction, some analog issues of busses may still be noticeable, such as

effects of signal reflections, transient glitches, and analog noise. To overcome these issues, most

digital busses are slowed down until they work properly. As a result, digital communication

over busses tend to be slower than the communication over direct channels. These penalties

can be minimized by careful engineering of the electrical bus in its intended environment.

5.2 Communication architectures

Many schemes have been suggested as the interconnection infrastructure for supporting various

communication patterns in digital systems, including point-to-point wires, multistage inter-

connection networks, and bussed interconnections. In Chapter 2, we investigated how busses

(multiple-pin wires) can be employed to efficiently realize certain classes of permutations among

modules in a digital system. We demonstrated that by connecting modules with bussed inter-

connections, as opposed to point-to-point wires, the number of pins per module can often be

significantly reduced.

Our bussed approach to realizing permutations compares favorably with both the point-

to-point and the multistage-interconnect approaches. Bussed permutation architectures realize

general classes of permutations in one clock cycle, exhibit small number of pins per module,

and use virtually no switching hardware. Point-to-point architectures, for comparison, can

support any communication pattern in one clock cycle, utilize no switching hardware, but use
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many pins per module. Multistage interconnection architectures, as another alternative, realize

general classes of permutations, exhibit a constant number of pins per module, but operate in

multiple clock cycles and use a considerable amount of switching hardware. We conclude that

bussed interconnections constitute an attractive alternative as a communication architecture.

It would be interesting to study other classes of communication patterns that can be efficiently

implemented on bussed interconnections.

Several theoretical studies of systems with bussed interconnections use hypergraphs to model

such systems. The topology of a system with bussed interconnections can be modeled as a

hypergraph, much as the topology of a system with point-to-point wires can be modeled as a

graph. (See [9] for definitions and basic properties of graphs and hypergraphs.) In systems

with bussed interconnections, system modules are modeled as hypergraph nodes and the busses

(multiple-pin wires) are modeled as hyperedges. This analogy enables many graph-theoretic

results to be interpreted in the domain of architectural design, as was done for instance in

[10, 11, 13, 30, 48, 49, 64, 73, 77). We believe that more research in this direction would be

fruitful.

The problem of realizing permutations on uniform architectures in several clock cycles

presents an interesting direction for further exploration. Our research have demonstrated that

cyclic shifts, for example, can be uniformly realized in t clock cycles by uniform architectures

with O(nl/ 2t) pins per module. It would be interesting to develop a pin-time tradeoff for general

classes of permutations on bussed architectures, similar to the tradeoff exhibited by multistage

interconnection networks and point-to-point wires. An advantage of generalized pin-time bussed

interconnections, over multistage interconnection networks, would be the avoidance of special

switching hardware.

5.3 Control mechanisms

Numerous digital systems use busses for implementing many control mechanisms. Busses are

useful media for broadcasting control signals and for performing various systemwide protocols.

In Chapter 3, we explored how busses can be efficiently used for arbitration. We focused on

distributed asynchronous priority arbitration schemes and demonstrated that by using data-

dependent analysis, certain popular mechanisms can be significantly improved.
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In Chapter 3, we investigated bussed priority arbitration mechanisms under a standard

digital bus model that assumes a time unit of bus-settling delay for a bus to stabilize to a valid

logic value. A more elaborate bus model that takes into account distances between modules and

signals propagation was examined in Chapter 4. In both of these bus models, the superiority of

the binomial arbitration scheme over the binary arbitration scheme was established. Analyzing

these arbitration schemes in an analog model of bus lines, which models various transient effects,

would probably be a difficult task. However, simulating the analog behavior of these arbitration

schemes could be a tractable goal.

On a more general note, the domain of data-dependent analysis of digital systems has not

been investigated much in the past. The results of our work demonstrate that a careful analysis

of the delays experienced in existing systems, may result in an in4:Joved performance of such

systems without changing them. A more systematic approach to analyzing data-dependent

delays in digital systems will prove as a valuable tool for digital circuit designers.

5.4 Transmission lines

In Chapter 4 we introduced and examined a digital transmission line model for a bus. In fact,

transmission lines exhibit analog behavior, but for the purposes of digital computation they

can be modeled as digital devices. The transmission line model enables a bus line to carry

multiple transactions at different locations simultaneously. This feature of a bus is utilized in

other shared media, such as radio channels and optical communication, but mostly is ignored

in electrical busses. It would be interesting to explore ways for using the transmission line

properties of electrical busses as well.

The design of digital communication protocols over busses should be a careful engineering

task, since high-speed busses are in effect analog transmission lines. Many bus systems work

properly only because the busses are slowed down until their analog behavior can be neglected

and the digital functions are correctly performed. However, ignoring the analog nature of

busses results in severe limitations to the performance of many bussed systems. It would be

interesting to investigate other models of transmission lines that capture somewhat more of the

analog behavior of this media.
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